
OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

7. Linking and Naming Support

OLE 1 introduced the notion two architecturally distinct kinds of compound-document objects: links and

embeddings. The fundamental distinction between the two is that of where the bits that are the native rep-

resentation of the object are persistently stored. With an embedded object, these bits are stored inside the

file61 of the container document, which also contains the presentation of the object. As a result, the object

appears to be part of the document. In contrast, the storage for an link object is not kept with the object it-

self, but is found elsewhere. Figure 72 illustrates this difference in storage between a linked and an em-

bedded object.

Embedded: Private to the

containing document,

and implicitly travels

with it.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

0
10
20
30
40
50
60
70
80

Aug Sept Oct Nov

Joe Skinhead, sweatshop manager, looks at his
computer display. A window shows a mail
message from his employer Mr. Beezness, Founder
and Patron Saint of the Om Exploitation
Corporation and Tax Shelter, wanting a progress
report and estimated delivery date for release 3.0
of the highly popular Saffron Robe. SR3.0 is a
major innovation in Saffron Robes, which allows
the user to wear it in three dimensions. There will
be over a million stitches in the product.

Fortunately, the FAP-
SOmECTS. is a
believer in modern
automation methods
and integrated soft-
ware. Joe turns to his
scrapbook window,
and flips the pages
until he locates the
note showing the bug
count from beta sites.AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

0
10
20
30
40
50
60
70
80

Aug Sept Oct Nov

Bug rates in thousands

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

0
10
20
30
40
50
60
70
80

Aug Sept Oct Nov

Joe Skinhead, sweatshop manager, looks at his
computer display. A window shows a mail
message from his employer Mr. Beezness, Founder
and Patron Saint of the Om Exploitation
Corporation and Tax Shelter, wanting a progress
report and estimated delivery date for release 3.0
of the highly popular Saffron Robe. SR3.0 is a
major innovation in Saffron Robes, which allows
the user to wear it in three dimensions. There will
be over a million stitches in the product.

Fortunately, the FAP-
SOmECTS. is a
believer in modern
automation methods
and integrated soft-
ware. Joe turns to his
scrapbook window,
and flips the pages
until he locates the
note showing the bug
count from beta sites.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

0
10
20
30
40
50
60
70
80

Aug Sept Oct Nov

Bug rates in thousands

Link

Linked: Shareable with

other documents, stored

separately.

Figure 72. Embedded vs. Linked objects

Linking support in OLE 1, though it was quite functional, suffered from some technical deficiencies:

(1) The specification of the source62 of a link was strictly a two-part (document, item) pair of

strings. As a result, it was impossible to create a link whose source was inside an object

which itself was an embedded object in another container.

(2) The name of a link source was recorded and stored in the link consumer using an absolute

path name. If the source of the link moved, then the link would break, and had to manually

be repaired by the user.

(3) Automatic links (formerly called “hot links”) did not reconnect themselves if the link source

was opened independently of the link consumer; the connection was only made if the source

was opened by traversing to it from its presentation in the consumer.

(4) The OLE 1 API function OleQueryOutOfDate(), intended to indicate whether the presenta-

tion of a linked or embedded object in its container was out of date or not, could not be

properly implemented. As a result, it was impossible to determine if all the links inside a

document were up to date or not, leading to the need for annoying dialogs every time the

user opened a document that contained links.

A concrete example will help illustrate these problems. Imagine that the OLE specification that you are

now reading is instead a quarterly report for a small company. One thing that the author of this report

wishes to do is to include an embedded table of sales results in the text, and also include an embedded

graph whose data is linked to the table. This is shown in Figure 73.

It is not possible in OLE 1 to construct such a link: the source of the data for the chart is a range in a

spreadsheet table which is itself embedded in the word processor document; this is an illustration of the

first problem described above. The name for the source of such a link needs at least three parts: the name

of the word processor document in the file system, the name of the spreadsheet in the word processor

document, and the name of the range of interest in the spreadsheet. If it were possible to create this in

OLE 1, then if the user were to bring up the Edit / Links dialog for the chart, she would see something like

61 or other persistent storage location, if appropriate. A relational database, for example.
62 In this chapter, the “source” of a link will mean the end of the link at which the data is actually stored; the “target”, the “consumer”, or

the “receiver” of the link will refer to the other end, the location which merely contains a presentation of the information.

Page: 171

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

as is shown in Figure 74. Note the multi-part name: the word

processor document has the drive and file name

“C:\Q3RPT.DOC”, the embedded spreadsheet table has the

bookmark name “SALESTBL” in the document, and it is the

range “R2C2:R7C7” in the spreadsheet that is actually being

used.

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAAAAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAAAAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

$0

$2,000

$4,000

$6,000

$8,000

Q1 Q2 Q3

AAAA
AAAA

Northeast

AAAA
AAAA
AAAA

Southeast

AAAA
AAAACentral

AAAA
AAAANorthwest

AAAA
AAAA

Southwest

Figure 73. An embedded chart

linked to a table embedded in the

same container.

This example also illustrates the second problem described

above: the only way in OLE 1 in which we can reference the

name of the link source is with an absolute path name. Here, we

use the path name “C:\Q3RPT.DOC”. If we were to move the

source word processing document elsewhere in the file system,

perhaps to the “D:” drive, perhaps to the subdirectory

“C:\QUARTERS”, or whatever, then the link inside the chart will

break, since it still contains the old absolute path. In OLE 1, we

do absolutely no form of link source tracking at all.

The third problem described above is a little more subtle.

Suppose for the moment that OLE 1 did not have the two-part

name limitation and therefore we could construct this scenario.

Imagine that we opened up Q3RPT.DOC, then opened up the

embedded spreadsheet within it and started making changes to

the data that it contains. Recall from Figure 74 that the chart

has an automatic link to this data; one would expect therefore

that the chart would automatically update itself as we changed the data. In OLE 1, however, this does not

happen; automatic link connections can only be established from the link consumer end, not from the link

source end. In this situation, the user would have to actually open the chart in order to establish the

connection.

The fourth problem is perhaps a little more straightforward: when opening a document that contains a

link there is simply no way to know whether the presentation in the link is up-to-date or not.

Figure 74. OLE 1 Edit / Links dialog modified to illustrate a multi-part link source.

OLE 2 provides the infrastructure by which these problems can be addressed. Central to this infrastructure

is a new referencing mechanism known as a moniker.63 A moniker is a conceptual handle to or name of

the object at the source of the link which can be persistently stored in the link consumer. It acts much like

a pointer in programming languages: at a later time, the link consumer can bind (“dereference”) the mon-

63 “Monicker n (Variations: moniker or monniker or monacer or monica or monaker) fr middle 1800s British hoboes A person’s

name, nickname, alias, etc.; =HANDLE: His “monica” was Skysail Jack Jack London / Ricord picked up a new moniker among US

narcotics agents Time [origin unknown and very broadly speculated upon; perhaps fr transference fr earlier sense, “guinea, sovereign,”

when used by hoboes as an identifying mark; perhaps related to the fact that early-19th-century British tramps referred to themselves as

“in the monkery,” that monks and nuns take a new name when they take their vows, and monaco means “monk” in Italian; perhaps, as

many believe, an alteration of monogram]”

The New Dictionary of American Slang, Edited by Robert L. Chapman, Ph.D.

Page: 172

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

iker in order to load the object to which it refers and get a real memory pointer to it. The binding process

may be complex: it may involve starting one or more servers, loading objects from files, etc. In particular,

some kinds of monikers will cause one or more levels of embedded object to be activated in order to reach

the data, and other kinds will track data as it moves about the file system. However, all this is hidden from

the caller; a moniker is opaque as far as it is concerned: the moniker encapsulates whatever needs to be

done in order to get back to the appropriate object. In a loose analogy, monikers provide the same sort of

abstraction and encapsulation for information references and binding as OLE 1 did for file formats and

presentation rendering.

The rest of this chapter is organized as follows. First, we present monikers in detail. Here we discuss the

conceptual model of what a moniker is, the interface that clients of monikers will use, as well as the se-

mantics of some important OLE-provided implementations of the moniker interface. We also illustrate in

some detail important parts of these implementations, since these provide a concrete understanding of

how the overall process of binding to a moniker actually operates. The section following deals with the

OLE 2 link objects. It presents the interfaces which are specific to links and discusses link implementa-

tions of the general compound document interfaces defined in earlier chapters. It also describes how

during the binding process we avoid loading an object a second time if it is already running.

7.1. Moniker Synopsis

A moniker is simply an object that supports the IMoniker interface. IMoniker interface includes the

IPersistStream interface; thus, monikers can be saved to and loaded from streams. The persistent form of a

moniker contains the class identifier (CLSID) of its implementation which is used during the loading proc-

ess, and so new kinds of monikers can be created transparently to clients.

The most basic operation in IMoniker interface is that of binding to the object to which it points, which is

supported by IMoniker::BindToObject(). This function takes as a parameter the interface identifier by

which the caller wishes to talk to the object, runs whatever algorithm is necessary in order to locate the

object, then returns a pointer of that interface type to the caller.64 Each moniker class can store arbitrary

data its persistent representation, and can run arbitrary code at binding time.

If there is an identifiable piece of persistent storage in which the object referenced by the moniker is

stored, then IMoniker::BindToStorage() can be used to gain access to it. Many objects have such

identifiable storage (all OLE embedded objects do, for example), but some, such as the objects which are

the ranges on a Microsoft Excel spreadsheet do not. (These ranges exist only as a part of Excel’s data

structures; they are in effect a figment of Excel’s imagination and are only reified65 on demand for

clients.)

In most cases, a particular moniker class is designed to be one step along the path to the information

source in question. These pieces can be composed together to form a moniker which represents the com-

plete path. For example, the moniker stored inside the chart of Figure 73 might be a composite moniker

formed from three pieces:

C:\Q3RPT.DOC
FileMoniker

SALESTBL
ItemMoniker

R2C2:R7C4
ItemMonikerMoniker class

User Name

GenericCompositeMoniker

Figure 75. Moniker in link of Figure 73.

This composite is itself a moniker; it just happens to be a moniker which is a sequenced collection of other

monikers. The composition here is generic in that it has no knowledge of the pieces involved other than

that they are monikers.

Most monikers have a textual representation which is meaningful to the user; this can be retrieved with

IMoniker::GetDisplayName(). The API function MkParseDisplayName() goes the other direction: it can

64 This function also takes some parameters that provide contextual information to the binding process which we shall get to in a moment.
65 Yes, it’s a word; look it up.

Page: 173

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

turn a textual display name into the appropriate moniker, though beware that in general this is operation

is as expensive as actually binding to the object.

Monikers can compare themselves to other monikers using IMoniker::IsEqual(). A hash value useful for

storing monikers in lookup tables is available through IMoniker::Hash(). Monikers are not a total order or

even a partial order; therefore, monikers cannot be stored in tables that rely on sorting for retrieval; use

hashing instead (it is inappropriate to use the display name of a moniker for sorting, since the display

name may not reflect the totality of internal state of the moniker).

The earliest time after which the object to which the moniker points is known not to have changed can be

obtained with IMoniker::GetTimeOfLastChange(). This is not necessarily the time of last change of the

object; rather, it is the best cheaply available approximation thereto.

A moniker can be asked to re-write itself into another equivalent moniker by calling IMoniker::Reduce().

This function returns a new moniker that will bind to the same object, but does so in a more efficient way.

This capability has several uses:

• It enables the construction of user-defined macros or aliases as new kinds of moniker classes.

When reduced, the moniker to which the macro evaluates is returned.

• It enables the construction of a kind of moniker which tracks data as it moves about. When

reduced, the moniker of the data in its current location is returned.

• On file systems such as Macintosh System 7 which support an ID-based method of accessing

files which is independent of file names, a File Moniker could be reduced to a moniker

which contains one of these IDs.

Figure 76 shows a (somewhat contrived) example of moniker reduction. It illustrates the reduction of a

moniker which names the net income entry for this year’s report in the “Projects” directory of the current

user’s home directory.

user profile
date,

working directory

Home
AliasMoniker

\\server\share
NetVolumeMoniker

fred
FileMoniker

Projects CurrentReport
FileMoniker MacroMoniker

NetIncome
ItemMoniker

Projects
FileMoniker

Annual
FileMoniker

NetIncome
ItemMoniker

1991.xls
FileMoniker

user name
class

original moniker:

reduced moniker:

objects connected to

during reduction:

Figure 76. Reduction of a moniker showing the objects connected to during reduction.

(Note that the particular classes of monikers used here are for illustrative purposes only.) As we can see,

many monikers in this example are reduced to something completely different, and some bind to some-

thing during their reduction, but some do not. For example, to reduce the alias “Home”, the reduction

must access the information that “Home” was an alias for “\\server\share\fred”.

The process of moniker reduction could be completely hidden in the implementations of IMoniker::Bind-

ToObject() were it not for the need to do auto-link reconnections (which was mentioned as problem (3)

above). We intend to support this functionality through the use of two global tables, the Alert Object Table

and the Running Object Table. The Alert Object Table66 contains an identification of those link consumers

who are awaiting the appearance of their link source, along with an identification of the triggering source;

the identification used for each is a moniker. The Running Object Table serves two roles. First, it serves as

the place where monikers in the process of binding look to see if they are already running or not. Second-

ly, when an object is placed in the Running Object Table, the moniker by which it is registered is com-

pared against the set of trigger monikers in the Alert Object Table to see if there is anything awaiting its

appearance. This requires that a link source when opened announce itself using exactly the same identify-

ing moniker as those link consumers which await its presence have indicated interest. Thus, the moniker

in the link consumer must ahead of time be reduced to the form that the link source knows as its identity.

66 Due to constraints imposed by implementation resources, the Alert Object Table is not implemented in this release of OLE. However, in

the interests of expository completeness (and, frankly, to save the editor’s tired fingers), the present chapter is written as if it were. We

trust readers will not be too confused.

Page: 174

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

Pointers to instances of IMoniker interface can be marshalled to other processes, just as any other inter-

face pointer can. Many monikers are of the nature that they are immutable once created and that they

maintain no object state outside themselves. Item Monikers are an example of a class of such monikers.

These monikers, which can be replicated at will, will usually want to support custom marshalling (see

IMarshal interface) so as to simply serialize themselves and deserialize themselves in the destination con-

text (see IPersistStream regarding serialization).

7.2. IMoniker interface and OLE IMoniker Implementations

This section describes the details of IMoniker interface and related interfaces. In addition, it discusses the

various kinds of monikers that are provide as part of OLE 2.

Some moniker errors have associated with them some extended information. See IBindCtxt::RegisterOb-

jectParam() for more details.

7.2.1. IMoniker interface

We’ll now look in detail at IMoniker interface its supporting functions and structures.

interface IMoniker : IPersistStream67 {
virtual HRESULT BindToObject(pbc, pmkToLeft, iidResult, ppvResult) = 0;
virtual HRESULT BindToStorage(pbc, pmkToLeft, iid, ppvObj) = 0;
virtual HRESULT Reduce(pbc, dwReduceHowFar, ppmkToLeft, ppmkReduced) = 0;
virtual HRESULT ComposeWith(pmkRight, fOnlyIfNotGeneric, ppmkComposite)
virtual HRESULT Enum(fForward, ppenmMoniker) = 0;
virtual HRESULT IsEqual(pmkOtherMoniker) = 0;
virtual HRESULT Hash(pdwHash) = 0;
virtual HRESULT IsRunning(pbc, pmkToLeft, pmkNewlyRunning) = 0;
virtual HRESULT GetTimeOfLastChange(pbc, pmkToLeft, pfiletime) = 0;
virtual HRESULT Inverse(ppmk) = 0;
virtual HRESULT CommonPrefixWith(pmkOther, ppmkPrefix) = 0;
virtual HRESULT RelativePathTo(pmkOther, ppmkRelPath);
virtual HRESULT GetDisplayName(pbc, pmkToLeft, lplpszDisplayName) = 0;
virtual HRESULT ParseDisplayName(pbc, pmkToLeft, lpszDisplayName, pcchEaten, ppmkOut) = 0;
virtual HRESULT IsSystemMoniker(pdwMksys);
};

HRESULT BindMoniker(pmk, reserved, iidResult, ppvResult);
HRESULT CreateBindCtx(reserved, ppbc);
HRESULT MkParseDisplayName(pbc, lpszDisplayName, pcchEaten, ppmk);
interface IParseDisplayName : IUnknown {

virtual HRESULT ParseDisplayName(pbc, lpszDisplayName, pcchEaten, ppmkOut) = 0;
};

HRESULT CreateGenericComposite(pmkFirst, pmkRest, ppmkComposite);
HRESULT CreateFileMoniker(lpszPathName, ppmk);
HRESULT CreateItemMoniker(lpszDelim, lpszItem, ppmk);
HRESULT CreateAntiMoniker(ppmk);
HRESULT CreatePointerMoniker(punk, ppmk);
HRESULT MonikerRelativePathTo(pmkSrc, pmkDest, ppmkRelPath, reserved);
HRESULT MonikerCommonPrefixWith(pmkThis, pmkOther, ppmkPrefix);

67 Notice that IMoniker interface derives from IPersistStream. As discussed in architectural overview chapter, this is an acceptable use of

inheritance within the Component Object Model (in contrast with implementation inheritance). However, if the author of IMoniker

interface had the chance to “do it over again,” he would not inherit from IPersistStream; rather, he would mandate simply that IMoniker

implementors must also implement IPersistStream accessible via QueryInterface().

Page: 175

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

7.2.1.1. IMoniker::BindToObject

HRESULT IMoniker::BindToObject(pbc, pmkToLeft, iidResult, ppvResult)

This is the workhorse function in IMoniker interface. Locate and load the object semantically referred to

by this moniker according to the interface indicated by iidResult and return the object through ppvResult.

After this call has returned, the semantics of the returned interface, whatever they are, should be fully

functional.

In general, each kind of moniker is designed to be used as one piece in a composite which gives the com-

plete path to the object in question. In this composite, any given piece has a certain prefix of the composite

to its left, and a certain suffix to its right. If BindToObject() is invoked on the given piece, then most often

the implementation of BindToObject() will require certain services of the object indicated by the prefix to

its left. Item monikers, for example, require IOleItemContainer interface of the object to their left; see

below. The Item Moniker implementation of BindToObject() recursively calls pmkToLeft->BindToOb-

ject() in order to obtain this interface. Other implementations of BindToObject() might instead invoke

pmkToLeft->BindToStorage() if they need access not to the object itself, but to its persistent storage.

prefix moniker piece suffix

needs certain services
Figure 77. Interface calculus of moniker pieces

In situations where the caller of BindToObject() does not have a moniker for the object on the left, but

instead has the object itself, a Pointer Moniker can be used to wrap the object pointer so that the moniker

may be bound.

In situations where the moniker in fact does not need services of the moniker to its left, yet one is provided

by the caller nevertheless, no error should occur; the moniker should simply ignore the needless moniker

to its left.

If the object indicated by the moniker does not exist, then the error MK_E_NOOBJECT is returned.

In general, binding a moniker can be quite a complicated process, since it may need to launch servers,

open files, etc. This often may involve binding to other objects, and it is often the case that binding pieces

of the composite to the right of the present piece will require the same other objects. In order to avoid

loading the object, releasing it, then having it loaded again later, BindToObject() can use the bind context

passed through the pbc parameter in order to defer releasing the object until the binding process overall is

complete. See IBindCtx::RegisterObjectBound() for details.

The bind context also contains a deadline time by which the caller would like the binding process to com-

plete, or fail with the error MK_E_EXCEEDEDDEADLINE if it cannot. This capability is not often used with

BindToObject(); it is more often used with other IMoniker functions such as GetTimeOfLastChange().

Nevertheless, BindToObject() implementations should (heuristically) honour the request. See IBindCtx::-

GetBindOptions() for details.

Usually, for most monikers, binding a second time will return the same running object as binding the first

time, rather than reloading it again from passive backing store. This functionality is supported with the

Running Object Table, which is described in detail later in this chapter. Basically, the Running Object

Table is a lookup table keyed by a moniker whose values are pointers to the corresponding now-running

object. As objects become running, the register themselves in this table. Implementations of BindToOb-

ject() can use this table to shortcut the binding process if the object to which they point is already running.

More precisely, if the passed pmkToLeft parameter is NULL (and this is not an error; that is, the moniker

does not require something to its left), then the moniker should fully reduce itself, then look itself up in

the Running Object Table and simply return the pointer to the object found there. If the pmkToLeft

parameter is non-NULL, then it is the responsibility of the caller to handle this situation; the BindToOb-

Page: 176

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

ject() implementation should not consult the Running Object Table.68 The Running Object Table is access-

ible from the bind context using IBindCtx::GetRunningObjectTable().

Argument Type Description

pbc IBindCtx* the bind context to be used for this binding operation.

pmkToLeft IMoniker* the moniker of the object to the left of this moniker.

iidResult IID the interface by which the caller wishes to connect to the object.

ppvResult void** on successful return, a pointer to the instantiated object is placed here,

unless BINDFLAGS_JUSTTESTEXISTENCE was specified in the binding

options, in which case NULL may be returned instead.

return value HRESULT S_OK, MK_E_NOOBJECT, STG_E_ACCESSDENIED, MK_E_EXCEEDED-
DEADLINE, MK_E_CONNECTMANUALLY, MK_E_INTERMEDIATEINTER-
FACENOTSUPPORTED, E_OUTOFMEMORY, E_NOINTERFACE

7.2.1.2. BindMoniker

HRESULT BindMoniker(pmk, reserved, iidResult, ppvResult)

Bind a moniker with the specified interface and return the result. This is strictly a helper function in that

it uses no functionality which is not also available publicly. It has roughly the following implementation:

IBindCtx pbc;
CreateBindCtx(0, &pbc);
pmk->BindToObject(pbc, NULL, iidResult, ppvResult);
pbc->Release();

Argument Type Description

pmk IMoniker * the moniker which is to be bound.

reserved DWORD reserved for future use; must be zero.

iidResult IID the interface by which the caller wishes to connect to the object.

ppvResult void ** on successful return, a pointer to the resulting object is placed here.

return value HRESULT S_OK, union of IMoniker::BindToObject() & CreateBindCtx() errors

7.2.1.3. IMoniker::BindToStorage

HRESULT IMoniker::BindToStorage(pbc, pmkToLeft, iid, ppvObj)

Return access to the persistent storage of the receiver using the given interface, rather than access to the

object itself, which is what IMoniker::BindToObject() returns. Consider, for example, a moniker which

refers to spreadsheet embedded in a word processing document, such as:

[c:\foo\bar.doc]
File Moniker

 ° [summaryTable]
Item Moniker

Calling IMoniker::BindToObject() on this composite will enable us to talk to the spreadsheet; calling

IMoniker::BindToStorage() will let us to talk to the IStorage instance in which it resides.

IMoniker::BindToStorage() will most often be called during the right-to-left recursive process of IMoni-

ker::BindToObject() invoked on a Generic Composite Moniker. Sometimes it is the case that monikers in

the tail of the composite don’t require access to the object on their left; they merely require access to its

persistent storage.69 In effect, these monikers can be bound to without also binding to the objects of the

monikers to their left, potentially a much more efficient operation.

Some objects do not have an independently identifiable piece of storage. These sorts of objects are really

only a object-veneer on the internal state of their container. Examples include named cell ranges inside an

Excel worksheet, and fragments of a Windows Word document delimited by bookmarks. Attempting to

68 The reason behind this rule lies in the fact that in order to look in the Running Object Table, we need the whole moniker in its fully

reduced form. If the current moniker is but a piece of a generic composite, then it has to be the composite’s responsibility for doing the

reduction; the moniker cannot do it correctly do it by itself.
69 OLE2 embeddings are never of this nature, since an object may be running only if its container is also running.

Page: 177

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

call IMoniker::BindToStorage() on a moniker which indicates one of these kinds of objects will fail with

the error MK_E_NOSTORAGE.

Use of the bind context in BindToStorage() is the same as in BindToObject().

Argument Type Description

pbc IBindCtx* the binding context for this binding operation.

iid IID the interface by which we wish to bind to this storage. Common

interfaces passed here include IStorage, IStream, and ILockBytes.

ppvObj void ** On successful return, a pointer to the instantiated storage is placed

here, unless BINDFLAGS_JUSTTESTEXISTENCE was specified in the

binding options, in which case NULL may be returned instead.

return value HRESULT S_OK, MK_E_NOSTORAGE, MK_E_EXCEEDEDDEADLINE, MK_E_CON-
NECTMANUALLY, E_NOINTERFACE, MK_E_INTERMEDIATEINTER-
FACENOTSUPPORTED, STG_E_ACCESSDENIED

7.2.1.4. IMoniker::Reduce

HRESULT IMoniker::Reduce(pbc, dwReduceHowFar, ppmkToLeft, ppmkReduced)

The reduction of monikers was overviewed and illustrated in the synopsis above; this is the function that

actually carries it out. Return a more efficient or equally efficient moniker that refers to the same object as

does this moniker. Many monikers, if not most, will simply reduce to themselves, since they cannot be re-

written any further. A moniker which reduces to itself indicates this by returning itself through ppmkRe-

duced and the returning status code MK_S_REDUCED_TO_SELF. A moniker which reduces to nothing

should return NULL, and should return the status code S_OK.

If the moniker does not reduce to itself, then this function does not reduce this moniker in-place; instead,

it returns a new moniker.

The reduction of a moniker which is a composite of other monikers repeatedly reduces the pieces of which

it is composed until they all reduce to themselves, then returns the composite of the reduced pieces.

dwReduceHowFar controls the stopping point of the reduction process. It controls to what extent the re-

duction should be carried out. It has the following legal values.

typedef enum tagMKRREDUCE {
MKRREDUCE_ONE = 3<<16,
MKRREDUCE_TOUSER = 2<<16,
MKRREDUCE_THROUGUSER = 1<<16,
MKRREDUCE_ALL = 0
} MKRREDUCE;

These values have the following semantics.

Value Description

MKRREDUCE_ONE Perform only one step of reduction on this moniker. In general, the caller

will have to have specific knowledge as to the particular kind of moniker in

question in order to be able to usefully take advantage of this option.

MKRREDUCE_TOUSER Reduce this moniker to the first point where it first is of the form where it

represents something that the user conceptualizes as being the identity of a

persistent object. For example, a file name would qualify, but a macro or

an alias would not. If no such point exists, then this option should be

treated as MKRREDUCE_ALL.

MKRREDUCE_THROUGUSER Reduce this moniker to the point where any further reduction would reduce

it to a form which the user does not conceptualize as being the identity of a

persistent object. Often, this is the same stage as MKRREDUCE_TOUSER.

MKRREDUCE_ALL Reduce the entire moniker, then, if needed reduce it again and again to the

point where it reduces to simply itself.

Page: 178

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

When determining whether they have reduced themselves as far as requested, IMoniker::Reduce() imple-

mentations should not compare for equality against dwReduceHowFar, as we wish to allow for the possi-

bility that intermediate levels of reduction will be introduced in the future. Instead, Reduce() implementa-

tions should reduce themselves at least as far as is requested.

An important concept in the above is the idea of a moniker that the user thinks of as the name of a persist-

ent object; a persistent identity. The intent is to provide the ability to programmatically reduce a moniker

to canonical forms whose display names would be recognizable to the user. Paths in the file system, book-

marks in word-processing documents, and range names in spreadsheets are all examples of user-identities.

In contrast, neither a macro nor an alias encapsulated in a moniker, nor an inode-like file ID moniker are

such identities.

The bind context parameter is used as in IMoniker::BindToObject(). In particular, implementations of

IMoniker::Reduce() should pay attention to the time deadline imposed by the caller and the reporting of

the moniker of the object that, if it had been running, would have allowed the reduction to progress fur-

ther. See IBindCtx below.

Argument Type Description

pbc IBindCtx* The bind context to use in this operation.

dwReduceHowFar DWORD Indicates to what degree this moniker should be reduced; see above.

ppmkToLeft IMoniker** On entry, the moniker which is the prefix of this one in the composite

in which it is found. On exit, the pointer is either NULL or non-

NULL. Non-NULL indicates that what was previously thought of as

the prefix should be disregarded and the moniker returned through

ppmkToLeft considered the prefix in its place (this is very rare).

NULL indicates that the prefix should not be so replaced. Thus, most

monikers will NULL out this parameter before returning.

ppmkReduced IMoniker** On exit, the reduced form of this moniker. Possibly NULL.

return value HRESULT S_OK, MK_S_REDUCED_TO_SELF, MK_E_EXCEEDEDDEADLINE.

7.2.1.5. IMoniker::ComposeWith

HRESULT IMoniker::ComposeWith(pmkRight, fOnlyIfNotGeneric, ppmkComposite)

Return a new moniker which is a composite formed with this moniker on the left and pmkRight on the

right. It is using this operation that the pieces of the path to an object are cobbled together to form the

overall full path.

There are two distinct kinds of composite monikers: those that know nothing about their pieces other than

that they are monikers, and those that know more. We have been terming the former a generic composite;

we have seen several examples above. An example of the latter might be that of the result of composing a

File Moniker containing a relative path on to the end of another File Moniker: the result could be a new

File Moniker containing the complete path.70 There is only a need for one implementation of a Generic

Composite Moniker, and this has been provided; see CreateGenericComposite(). Non-generic composition

is useful for monikers that are capable of collapsing a path within a storage domain to a more efficient

representation in a subsequent Reduce() operation. None of the monikers provided with OLE 2 are capable

of this, but an implementation of File Moniker which could collapse down to a inode-like file ID might be

an example.

Each moniker class in general will have a (possibly empty) set of other kinds of special monikers that can

be composed onto the end of it in a non-generic way; the moniker class has some sort of intimate knowl-

edge about the semantics of these special monikers, more than simply that they are monikers. Each Com-

poseWith() implementation will examine pmkRight to see if it is such a special moniker for this imple-

70 In fact, the current implementation of File Monikers does have this behaviour. An alternative to the non-generic composition

implementation described here is that the elements in a path are each separate monikers which are then generically composed together.

Page: 179

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

mentation. Often, it will ask pmkRight for its class, but other possibilities exist, such as using Query-

Interface(). A very common case of such special monikers are Anti Monikers.

If pmkRight is special, then the ComposeWith() implementation does whatever is appropriate for that

special case. If it is not, then fOnlyIfNotGeneric controls what should occur. If fOnlyIfNotGeneric is true,

then NULL should be passed back through ppmkComposite and the status MK_E_NEEDGENERIC returned;

if fOnlyIfNotGeneric is false, then a generic composite should be returned using CreateGeneric-

Composite(). Most callers of ComposeWith() should set fOnlyIfNotGeneric to false.71

In any situation that pmkRight completely annihilates the receiver (i.e.: irrespective of fOnlyIfNotGener-

ic), and so the resulting composite is empty, NULL should be passed back through ppmkComposite and

the status S_OK returned.

The pieces of a moniker that have been composed together can be picked apart using IMoniker::Enum().

On a generic composite, this enumerates the monikers contained within it. On other monikers, which par-

ticular pieces are returned is implementation-defined.

Composition of monikers is an associative operation. That is, if A, B, and C are monikers, then

(A ° B) ° C
is always equal to

A ° (B ° C)
where ° represents the composition operation. Each implementation of IMoniker::ComposeWith() must
maintain this invariant.

Argument Type Description

pmkRight IMoniker* the moniker to compose onto the end of the receiver.

fOnlyIfNotGeneric BOOL controls what should be done in the case that the way for form a com-

posite is to use a generic one.

ppmkComposite IMoniker* on exit, the resulting composite moniker. Possibly NULL.

return value HRESULT S_OK, MK_E_NEEDGENERIC

7.2.1.6. IMoniker::Enum

HRESULT IMoniker::Enum(fForward, ppenmMoniker)

Enumerate the monikers of which the receiver is logically a composite. On a generic composite, this enu-

merates the pieces of which the composite is composed. On other monikers, the semantics of the pieces of

which it is a composite are implementation-defined. For example, enumerating the pieces of a File

Moniker might pick apart the internally stored path name into its components, even though they are not

stored internally as actual separate monikers.72 Many monikers have no discernible internal structure; they

will simply pass back NULL instead of an enumerator.

IEnumMoniker is an enumerator that supports the enumeration of items which are monikers. It is defined

as:
typedef Enum<IMoniker*> IEnumMoniker;

which is shorthand for

interface IEnumMoniker : IUnknown {
virtual HRESULT Next(ULONG celt, IMoniker* rgelt[], ULONG* pceltFetched) = 0;
virtual HRESULT Skip(ULONG celt) = 0;
virtual HRESULT Reset() = 0;
virtual HRESULT Clone(IEnumMoniker** ppenm) = 0;
};

See the section in Chapter 4 on “Enumerators” for information on how enumerators should be used, and

the description of the semantics of these methods.

71 fOnlyIfNotGeneric is set by recursive ComposeWith() calls from the implementation of Generic Composite Moniker - ComposeWith().
72 Could, that is, if File Monikers internally used non-generic composition. Currently, they do not.

Page: 180

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

Argument Type Description

fForward BOOL If true, then the enumeration should be done in the normal order. If

false, then the order should be the reverse of the order enumerated by

the normal order.

ppenmMonikerIEnumMoniker** On exit, the returned enumerator. May be NULL, signifying that there

is nothing to enumerate.

return value HRESULT S_OK.

7.2.1.7. IMoniker::IsEqual

HRESULT IMoniker::IsEqual(pmkOtherMoniker)

The most important use of this function is in the implementation of the Running Object Table. As dis-

cussed in detail later, this table has two distinct but closely related rôles. First, using a moniker, entries in

the Running Object Table indicate those objects which are presently now logically running and to which

auto-link reconnections should be made. Second, for those objects which are actually running (have an

object pointer), it provides a means given their moniker to actually connect to the appropriate running ob-

ject.

The moniker implementation should not reduce itself before carrying out the compare operation.

Two monikers which can compare as equal in either order must hash to the same value; see IMoniker::-

Hash().

Argument Type Description

pmkOtherMoniker IMoniker* the other moniker with whom we would like to compare the receiver.

return value HRESULT S_OK, S_FALSE

7.2.1.8. IMoniker::Hash

HRESULT IMoniker::Hash(pdwHash)

Return a 32 bit integer associated with this moniker. This integer is useful for maintaining tables of moni-

kers: the moniker can be hashed to determine a hash bucket in the table, then compared with IsEqual()

against all the monikers presently in that hash bucket.

It must always be the case that two monikers that compare as equal in either order hash to the same value.

In effect, implementations of IsEqual() and Hash() are intimate with one another; they must always be

written together.

The value returned by IMoniker::Hash() is invariant under marshalling: if a moniker is marshalled to a

new context, then Hash() invoked on the unmarshalled moniker in the new context must return the same

value as Hash() invoked on the original moniker. This is the only way that a global table of monikers such

as the Running Object Table can be maintained in shared space, yet accessed from many processes. The

obvious implementation technique this indicates is that Hash() should not rely on the memory address of

the moniker, but only its internal state.

Argument Type Description

pdwHash DWORD * the place in which to put the returned hash value.

return value HRESULT S_OK

7.2.1.9. IMoniker::IsRunning

HRESULT IMoniker::IsRunning(pbc, pmkToLeft, pmkNewlyRunning)

Answer as to whether this moniker is in fact running. As usual, the Running Object Table in whose

context this question is to be answered is obtained by this moniker from the Bind context. pmkToLeft is

the moniker to the left of this object in the generic composite in which it is found, if any.

Page: 181

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

If non-NULL, pmkNewlyRunning is the moniker which has most recently been added to the Running

Object Table; the implementation of IsRunning() can assume that without this object in the R.O.T., that

IsRunning() would have reported that it was not running; thus, the only way that it can now be running is

if this newly running moniker is in fact itself! This allows for some n2-to-n reductions in algorthims that

use monikers. (If the moniker implementation chose to ignore pmkNewlyRunning, no harm would come:

this moniker is in fact in the R.O.T.)

Implementations of this method in various kinds of moniker classes are roughly as follows:

Generic Composite Moniker

if (pmkToLeft != NULL)
return (pmkToLeft->ComposeWith(this)) -> IsRunning(pbc, NULL, pmkNewlyRunning);

if (pmkNewlyRunning != NULL) {
if (pmkNewlyRunning -> IsEqual(this) == NOERROR)

return NOERROR;
}

else if (pRunningObjectTable -> IsRunning(this) == NOERROR)
return NOERROR;

// otherwise, forward it on to my last element.
return this->Last()->IsRunning(pbc, this->AllButLast(), pmkNewlyRunning)

Any moniker whose class does not do any wildcard matching

if (pmkToLeft == NULL) {
if (pmkNewlyRunning != NULL)

return pmkNewlyRunning -> IsEqual(this);
else

return pRunningObjectTable -> IsRunning(this);
}

else
return ResultFromScode(S_FALSE); // If I was running, then Generic Composite would have caught it.

A moniker class which has a wild card entry which always matches any instance of the moniker class: if

the wild card is present, then all instances of the moniker class to the right of the same other moniker

(that is, with the same moniker to their left) are deemed to be running. Such a moniker class might be

reasonably used, for example, to match all the addressable ranges in a given spreadsheet.

if (pmkToLeft == NULL) {
if (pmkNewlyRunning != NULL)

return pmkNewlyRunning->IsEqual(this) == NOERROR
|| pmkNewlyRunning->IsEqual(my wild card moniker) == NOERROR;

if (pRunningObjectTable -> IsRunning(this) == NOERROR)
return NOERROR;

return pRunningObjectTable -> IsRunning(my wild card moniker);
}

else
return pmkToLeft->ComposeWith(my wild card moniker) -> IsRunning(pbc, NULL, pmkNewlyRunning);

A moniker class which has a wild card entry which matches against some of the objects, but only the ones

which are in fact actually currently running. We illustrate here specifically the behaviour of Item

Monikers.

if (pmkToLeft == NULL) {
if (pmkNewlyRunning != NULL) {

if (pmkNewlyRunning->IsEqual(this) == NOERROR)
return NOERROR;

if (pmkNewlyRunning->IsEqual(my wild card moniker) != NOERROR)
return ResultFromScode(S_FALSE);

goto TestBind:
}

}
if (pmkToLeft->ComposeWith(my wild card moniker)->IsRunning(pbc, NULL, pmkNewlyRunning) != NOERROR)

return ResultFromScode(S_FALSE);
TestBind:

// In general, connect to the container and ask whether the object is running. The use of
// IOleItemContainer here is Item Moniker-specific, but the theme is a general one.
IOleItemContainer *pcont;
pmkToLeft->BindToObject(pbc, NULL, IID_IOleItemContainer, &pcont);
return pcont->IsRunning(szItemString);

Page: 182

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

The arguments to this function are as follows:

Argument Type Description

pbc IBindCtx* the usual bind context

pmkToLeft IMoniker* the moniker to the left of this one in the composite in which it is

found.

pmkNewlyRunning IMoniker* may be NULL. If non-NULL, then this is the moniker which has been

most recently added to the R.O.T. In this case, IMoniker::IsRunning()

implementations may assume that without this moniker in the R.O.T.

that IsRunning() would return S_FALSE.

return value HRESULT S_OK, S_FALSE

7.2.1.10. IMoniker::GetTimeOfLastChange

HRESULT IMoniker::GetTimeOfLastChange(pbc, pmkToLeft, pfiletime)

Answer the earliest time after which the object pointed to by this moniker is known not to have changed.

The purpose of this function is to support the ability to determine whether a given OLE link object or OLE

embedded object which contains links is up-to-date or not. This is usually done as user documents are

opened; thus, in most cases it will be important that this operation is fast. Implementations should pay

particular attention to the deadline parameter passed in the bind context.

If it is not the case that all the objects in a document are known to be up-to-date, the user will usually be

prompted with a dialog as to whether they should be updated. If he says yes, then each of the objects

which is not known to be up-to-date will be bound to in order to retrieve a new presentation. The point

germane to the present discussion is that GetTimeOfLastChange() is part of the mechanism of avoiding

binding to objects unnecessarily. GetTimeOfLastChange() itself, therefore, should not bind to the object in

order to obtain the most accurate answer. Rather, it should return the best available answer given objects

that are already running. Many monikers denote an object contained in the object denoted by the moniker

to their left. Implementations of GetTimeOfLastChange() in most of these monikers can take advantage of

the fact they cannot have changed any later than the object in which they are contained. That is, these

monikers can simply forward the call onto the moniker to their left.

The returned time of change is reported using a FILETIME. A FILETIME is a 64-bit value indicating a time in

units of 100 nanoseconds, with an origin in 1601 (see FILETIME elsewhere in this specification for de-

tails).73 A resolution of 100 nanoseconds allows us to deal with very fast-changing data; allocating this

many bits gives us a range of tens of thousands of years. It is not expected that most change times in

objects will be actually be internally recorded with this precision and range; they only need be reported

with such.

If the time of last change is unavailable, either because the deadline was exceeded or otherwise, then it is

recommended that a FILETIME of {dwLowDateTime,dwHighDateTime} = {0xFFFFFFFF,0x7FFFFFFF} (note the 0x7

to avoid accidental unsigned / signed confusions) should be passed back. If the deadline was exceeded,

then the status MK_E_EXCEEDEDDEADLINE should be returned. If the time of change is unavailable, and

would not be available no matter what deadline were used, then MK_E_UNAVAILABLE should be returned.

Otherwise, S_OK should be returned.

If pmkToLeft is NULL, then this function should generally first check for a recorded change-time in the

Running Object Table with IRunningObjectTable::GetTimeOfLastChange() before proceeding with other

strategies. Moniker classes that support wildcards will have to take into consideration exactly what does

get put in the R.O.T. and look for the appropriate thing; since Generic Composite Monikers know nothing

of wildcards, they may even need to do that in the non-NULL pmkToLeft case. See IMoniker::IsRun-

ning().

73 The definition of FILETIME was taken from the Microsoft Windows–32 specification.

Page: 183

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

Argument Type Description

pbc IBindCtx* the binding context for this operation.

pmkToLeft IMoniker* the moniker to the left of this one in the composite in which it is

found.

pfiletime FILETIME* the place in which the time of last change should be reported.

return value HRESULT S_OK, MK_E_EXCEEDEDDEADLINE, MK_E_UNAVAILABLE,
MK_E_CONNECTMANUALLY

7.2.1.11. IMoniker::Inverse

HRESULT IMoniker::Inverse(ppmk)

Answer a moniker that when composed onto the end of this moniker or one of similar structure will an-

nihilate it; that is, will compose to nothing. IMoniker::Inverse() will be needed in implementations of

IMoniker::RelativePathTo(), which are important for supporting monikers that track information as it

moves about.

This is the abstract generalization of the “..” operation in traditional file systems. For example a File

Moniker which represented the path “a\b\c\d” would have as its inverse a moniker containing the path

“..\..\..\..”, since “a\b\c\d” composed with “..\..\..\..” yields nothing.

Notice that an the inverse of a moniker does not annihilate just that particular moniker, but all monikers

with a similar structure, where structure is of course interpreted with respect to the particular moniker.

Thus, the inverse of a Generic Composite Moniker is the reverse composite of the inverse of its pieces.

Monikers which are non-generic composites (such as File Monikers are presently implemented) will also

have non-trivial inverses, as we just saw. However, there will be many kinds of moniker whose inverse is

trivial: the moniker adds one more piece to an existing structure; its inverse is merely a moniker that

removes the last piece of the existing structure. A moniker that when composed onto the end of a generic

moniker removes the last piece is provided; see CreateAntiMoniker(). Monikers with no internal structure

can return one of these as their inverse.

Not all monikers have inverses. The inverse of an anti-moniker, for example, does not exist. Neither will

the inverses of most monikers which are themselves inverses. It is conceivable that other monikers do not

have inverses as well; a macro moniker might be an example. Monikers which have no inverse cannot

have relative paths formed from things inside the objects they denote to things outside.

Argument Type Description

ppmk IMoniker** the place to return the inverse moniker.

return value HRESULT S_OK, MK_E_NOINVERSE.

7.2.1.12. IMoniker::CommonPrefixWith

HRESULT IMoniker::CommonPrefixWith(pmkOther, ppmkPrefix)

Answer the longest common prefix that the receiver shares with the moniker pmkOther. This functional-

ity is useful in constructing relative paths, and for performing some of the calculus on monikers needed by

the Edit / Links dialog.

Argument Type Description

pmkOther IMoniker* the moniker with whom we are determine the common prefix.

ppmkPrefix IMoniker* the place to return the common prefix moniker. NULL is returned only

in the case that the common prefix does not exist.

return value HRESULT MK_S_ME, indicating that the receiver as a whole is the common

prefix. MK_S_HIM, indicating that pmkOther as a whole is the common

prefix. MK_S_US, indicating that in fact the two monikers are equal.

S_OK, indicating that the common prefix exists but is neither the

Page: 184

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

receiver nor pmkOther. MK_S_NOPREFIX indicating that no common

prefix exists.

7.2.1.13. MonikerCommonPrefixWith

HRESULT MonikerCommonPrefixWith(pmkThis, pmkOther, ppmkPrefix)

This function is intended solely for the use of moniker implementors; clients of monikers “need not

apply;” clients should instead compute the common prefix between two monikers by using

pmkSrc->CommonPrefixWith(pmkOther, ppmkPrefix);
Implementations of IMoniker::CommonPrefixWith() necessarily call MonikerCommonPrefixWith() as

part of their internal processing. Such a method should first check to see if the other moniker is a type that

it recognizes and handles specially. If not, it should call MonikerCommonPrefixWith(), passing itself as

pmkSrc and the other moniker as pmkDest. MonikerCommonPrefixWith() will handle the generic comp-

osite cases correctly.

Argument Type Description

pmkThis IMoniker * the starting moniker for the computation of the relative path.

pmkOther IMoniker * the moniker to which a relative path should be taken.

ppmkPrefix IMoniker ** May not be NULL. The place at which the moniker of pmkDest

relative to pmkSrc is to be returned.

return value HRESULT S_OK, MK_S_HIM, MK_S_ME, MK_S_US, MK_S_NOPREFIX

7.2.1.14. IMoniker::RelativePathTo

HRESULT IMoniker::RelativePathTo(pmkOther, ppmkRelPath)

Answer a moniker that when composed onto the end of this one or one with a similar structure will yield

pmkOther. Conceptually, implementations of this function usually work as follows: the longest prefix that

the receiver and pmkOther have is common is determined. This breaks the receiver and pmkOther each

into two parts, say (P,T
me

) and (P,T
him

) respectively, where P is the maximal common prefix. The correct

relative path result is then T Tme him
− °1 .

For any given implementation of this function, it is usually the case that the same pmkOther monikers are
treated specially as would be in IMoniker::ComposeWith(). File Monikers, for example, might treat other
File Monikers specially in both cases.

See also MonikerRelativePathTo().

Argument Type Description

pmkOther IMoniker* the moniker to which a relative path should be taken.

ppmkRelPath IMoniker* May not be NULL. The place at which the relative path is returned.

return value HRESULT MK_S_HIM, indicating that the only form of relative path is in fact just

the other moniker, pmkOther. S_OK, indicating that a non-trivial

relative path exists.

7.2.1.15. MonikerRelativePathTo

HRESULT MonikerRelativePathTo(pmkSrc, pmkDest, ppmkRelPath, reserved)

This function is intended solely for the use of moniker implementors; clients of monikers “need not

apply;” clients should instead compute the relative path between two monikers by using

pmkSrc->RelativePathTo(pmkDest, ppmkRelPath);
Implementations of IMoniker::RelativePathTo() necessarily call MonikerRelativePathTo() as part of their

internal processing. Such a method should first check to see if the other moniker is a type that it

recognizes and handles specially. If not, it should call MonikerRelativePathTo(), passing itself as pmkSrc

and the other moniker as pmkDest. MonikerRelativePathTo() will handle the generic composite cases

correctly.

Page: 185

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

Argument Type Description

pmkSrc IMoniker * the starting moniker for the computation of the relative path.

pmkDest IMoniker * the moniker to which a relative path should be taken.

ppmkRelPath IMoniker ** May not be NULL. The place at which the moniker of pmkDest

relative to pmkSrc is to be returned.

reserved BOOL must be non-zero (NOTE!)

return value HRESULT S_OK, MK_S_HIM

7.2.1.16. IMoniker::GetDisplayName

HRESULT IMoniker::GetDisplayName(pbc, pmkToLeft, lplpszDisplayName)

Most monikers have a textual representation which is meaningful to a human being. This function returns

the current display name for this moniker, or NULL if none exists.

Some display names may change over time as the object to which the moniker refers moves about in the

context in which it lives. Formula references between two Microsoft Excel 4.0 spreadsheets are an exa-

mple of this (formula references between cells are conceptually very much like OLE links). A formula

referring to cell “R1C1” in another sheet may change to the refer to “R2C1” if a new row is inserted at the

top of the second sheet: the reference still refers to the same actual cell, but now the cell has a different

address in its sheet. This behaviour leads to the general observation that obtaining the current display

name of a moniker may have to access at least the storage of the object to which it refers, if not the object

itself. Thus, it has the potential to be an expensive operation. As in other IMoniker functions, a bind con-

text parameter is passed which includes a deadline within which the operation should complete, or fail

with MK_E_EXCEEDEDDEADLINE if unable to do so.

A consequence of the possible unavailability of quick access to the display name of a moniker is that call-

ers of this function most likely will want to cache the last successful result that they obtained, and use that

if the current answer is inaccessible (this caching is the Microsoft Excel between-sheet behaviour).

In the general case, the display name of a moniker is not unambiguous: there may be more than one

moniker with the same display name, though in practice this will be rare. There is also no guarantee that

a display name obtained from a moniker will parse back into that moniker in MkParseDisplayName(),

though failure to do so also will be rare. Display names should therefore be thought of as a merely a note

or annotation on the moniker which aid a human being in distinguishing one moniker from another,

rather than a completely equivalent representation of the moniker itself.

Notice that due to how display names are constructed in composites, a moniker which is a prefix of

another necessarily has a display name which is a (string) prefix of the display name of the second

moniker. The converse, however, does not necessarily hold.

A moniker which is designed to be used as part of a generic composite is responsible for including any

preceding delimiter as part of its display name. Many such monikers take a parameter for this delimiter in

their instance creation functions.

Argument Type Description

pbc IBindCtx* the bind context for this operation.

pmkToLeft IMoniker* the moniker to the left of this one in the composite in which it is

found. Most monikers will not require this in GetDisplayName().

lplpszDisplayName LPSTR * on exit, the current display name for this moniker. NULL if the

moniker does not have a display name or the deadline was exceeded.

return value HRESULT S_OK, MK_E_EXCEEDEDDEADLINE.

Page: 186

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

7.2.1.17. MkParseDisplayName

HRESULT MkParseDisplayName(pbc, lpszDisplayName, pcchEaten, ppmk)

Recall from IMoniker::GetDisplayName() that most monikers have a textual name which is meaningful to

the user. The function MkParseDisplayName() does the logical inverse operation: given a string, it returns

a moniker of the object that the string denotes. This operation is known as parsing. A display name is

parsed into a moniker; it is resolved into its component moniker parts.

If a syntax error occurs, than an indication of how much of the string was successfully parsed is returned

in pcchEaten and NULL is returned through ppmk. Otherwise, the value returned through pcchEaten

indicates the entire size of the display name.

Argument Type Description

pbc IBindCtx* the binding context in which to accumulate bound objects.

lpszDisplayNameLPSTR the display name to be parsed.

pcchEaten ULONG* on exit the number of characters of the display name that was

successfully parsed. Most useful on syntax error.

ppmk IMoniker* the resulting moniker.

return value HRESULT S_OK, MK_E_SYNTAX.

In general, parsing a display name is as expensive as binding to the object that it denotes, since along the

way various name space managers need to be connected to by the parsing mechanism. As is usual, this

manager objects are not released by the parsing operation itself, but are instead handed over to the passed-

in binding context. Thus, if the moniker resulting from the parse is immediately bound using this binding

context, redundant loading of objects is maximally avoided.

Generally, parsing will be used considerably less often than one might at first glance expect. Most com-

pound document links, for example, are created by a user doing Copy followed by Paste Link rather than by

her typing in the name of the link source, and this link is created programmatically with no need for an

intermediate form which is a human-readable textual representation. The primary use of MkParse-

DisplayName() lies instead in textual programming languages which permit remote references as syn-

tactic elements. The expression language of a spreadsheet is a good example of such a language. MkParse-

DisplayName() will also be used in the implementation of the standard Edit / Links dialog.

The parsing process is an inductive one, in that there is an initial step that gets the process going, fol-

lowed by the repeated application of an inductive step. At any point after the beginning of the parse, a cer-

tain prefix of lpszDisplayName has been parsed into a moniker, and a suffix of the display name remains

not understood. This is illustrated in Figure 78.

"c:\foo\bar\baz.doc\summarytable\chart 5\series 1\point 7"lpszUserName

c:\foo\bar\baz.doc "summarytable\chart 5\series 1\point 7"moniker-so-far remaining suffix

Figure 78. Intermediate stage in parsing a display name into a moniker.

The inductive step asks the moniker-so-far using IMoniker::ParseDisplayName() to consume as much as it

would like of the remaining suffix and return the corresponding moniker and the new suffix. The moniker

is composed onto the end of the existing moniker-so-far, and the process repeats.

Implementations of IMoniker::ParseDisplayName() vary in exactly where the knowledge of how to carry

out the parsing is kept. Some monikers by their nature are only used in particular kinds of containers.74 It

is likely that these monikers themselves have the knowledge of the legal display name syntax within the

objects that they themselves denote, and so they can carry out the processes completely within IMoniker::-

ParseDisplayName(). The common case, however, is that the moniker-so-far is generic in the sense that is

not specific to one kind of container, and thus cannot know the legal syntax for elements within the con-

74 None of the monikers provided with OLE 2 are of this form, but some may be created by particular container applications.

Page: 187

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

tainer. File monikers are an example of these, as are Item Monikers. These monikers in general employ

the following strategy to carry out parsing. First, the moniker connects to the class of object that it

currently denotes, asking for IParseDisplayName interface (see the GetClassObject() function). If that suc-

ceeds, then it uses the obtained interface pointer to attempt to carry out the parse. If the class refuses to

handle the parse, then the moniker binds to the object it denotes, asking again for IParseDisplayName

interface. If this fails, then the parse is aborted.

The effect is that ultimately an object always gets to be in control of the syntax of elements contained

inside of itself. It’s just that objects of a certain nature can carry out parsing more efficiently by having a

moniker or their class do the parsing on their behalf.

Notice that the OLE 2 parsing machinery knows nothing of the legal syntax of display names (with the

exception of the initial parsing step; see below). It is of course beneficial to the user that display names in

different contexts not have gratuitously different syntax. While there some rare situations which call for

special purpose syntax, it is recommended that, unless there are compelling reasons to do otherwise, the

syntax for display names should be the same as or similar to the native file system syntax; the aim is to

build on user familiarity. Most important about this are the characters allowed for the delimiters used to

separate the display name of one of the component monikers from the next. Unless through some special

circumstances they have very good reason not to, all moniker implementations should use inter-moniker

delimiters from the character set:

\ / : ! [
Standardization in delimiters promotes usability. But more importantly, notice that the parsing algorithm

has the characteristic that a given container consumes as much as it can of the string being parsed before

passing the remainder on to the designated object inside themselves. If the delimiter expected of the next-

to-be-generated moniker in fact forms (part of) a valid display name in the container, then the container’s

parse will consume it!

Monikers and objects which have implementations on more than one platform (such as File Monikers)

should always parse according to the syntax of the platform on which they are currently running. When

asked for their display name, monikers should also show delimiters appropriate to the platform on which

they are currently running, even if they were originally created on a different platform. In total, users will

always deal with delimiters appropriate for the host platform.

The initial step of the parsing process is a bit tricky, in that it needs to somehow determine the initial

moniker-so-far. MkParseDisplayName() is omniscient with respect to the syntax with which the display

name of a moniker may legally begin, and it uses this omniscience to choose the initial moniker.

Presently, in OLE 2, this syntax is fixed: parsing a legal display name must begin with an existing file

name. However, said file name may be drive absolute, drive relative, working-directory relative, or begin

with an explicit network share name. Further, if an existing file name is not found, the Running Object

Table is searched for File Monikers which may be registered to support connections to as-yet-unsaved

documents; in detail, the display name up to the first ‘\’, ‘/’, or ‘!’ is consulted as a File Moniker in the

table. The DDE name space is also searched, for OLE1 compatibility.

Note, however, that this inability to parse into other monikers is the only restriction forcing composite

monikers to begin with a file moniker.

In the future, it is likely that a mechanism will be provided by which new parsers can be installed. One

way this might work is to have each parser register the regular expression which recognizes its prefixes

(that is, restrict ourselves to regular expression grammars). At parse time, MkParseDisplayName() would

choose the language which maximally matched against the display name.

7.2.1.18. IMoniker::ParseDisplayName

HRESULT IMoniker::ParseDisplayName(pbc, pmkToLeft, lpszDisplayName, pcchEaten, ppmkOut)

Given that the composite moniker (pmkToLeft ° (the receiver)) is the moniker which has so far been parsed,
parse as much of the remaining tail as is appropriate. In general, the maximal prefix of lpszDisplayName
which is syntactically valid and which currently represents an existing object should be consumed.

Page: 188

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

The main loop of MkParseDisplayName() finds the next piece moniker piece by calling this function on
the moniker-so-far that it holds on to, passing NULL through pmkToLeft. In the case that the moniker-so-
far is a generic composite, this is forwarded by that composite onto its last piece, passing the prefix of the
composite to the left of the piece in pmkToLeft.

lpszDisplayName is the as-yet-to-be-parsed tail of the display name. This function is to consume as much
of it as is appropriate for a name within the object identified by (pmkToLeft ° (the receiver)) and return the
corresponding moniker.

Some moniker classes will be able to handle this parsing internally to themselves since they are designed

to designate only certain kinds of objects. Others will need to bind to the object that they designate in or-

der to accomplish the parsing process. As is usual, these objects should not be released by IMoniker::-

ParseDisplayName() but instead should be transferred to the bind context for release at a later time.

If a syntax error occurs, then NULL should be returned through ppmkOut and MK_E_SYNTAX returned. In

addition, the number of characters of the display name that were successfully parsed should be returned

through pcchEaten.

Argument Type Description

pbc IBindCtx* the binding context in which to accumulate bound objects.

pmkToLeft IMoniker* the moniker to the left of this one in the so-far-parsed display name.

lpszDisplayNameLPSTR the display name to be parsed.

pcchEaten ULONG* the number of characters of the input name that this parse consumed.

ppmkOut IMoniker* the resulting moniker.

return value HRESULT S_OK, MK_E_SYNTAX.

7.2.1.19. IMoniker::IsSystemMoniker

HRESULT IMoniker::IsSystemMoniker(pdwMksys)75

Answer as to whether this moniker is a type of moniker whose particular implementation semantics are

conceptually important to the binding process. The values returned through pdwMksys are taken from the

following enumeration:

typedef enum tagMKSYS {
MKSYS_NONE = 0,
MKSYS_GENERICCOMPOSITE = 1,
MKSYS_FILEMONIKER = 2,
MKSYS_ANTIMONIKER = 3,
MKSYS_ITEMMONIKER = 4,
MKSYS_POINTERMONIKER = 5,
} MKSYS;

All user implementations of this function must simply return MKSYS_NONE through pdwMksys. IMoniker-

::GetClassID() (see IPersist) can be used instead by non-system monikers to check for the presence of their

own “special” moniker on the right in IMoniker::ComposeWith(). Alternatively, use QueryInterface() to

test for the presence of your own private interface (though this approach would also require custom mar-

shalling).

New values of this enumeration may be defined in the future; caller’s of this function should be aware of

this fact and should therefore explicitly test against known return values that they care about (rather than,

for example, assuming that if the returned value is not one of the values listed here then it’s the other).

The returned value is not a bitfield value; rather it is an integer.

Argument Type Description

pdwMksys DWORD* the place at which the result is to be returned. May not be NULL.

return value HRESULT S_OK

75 This function is a member of IMoniker interface rather than an independent API function in order that future revisions of this function

can be correctly correlated with revisions to system moniker classes.

Page: 189

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

7.2.2. IParseDisplayName interface

7.2.2.1. IParseDisplayName::ParseDisplayName

HRESULT IParseDisplayName::ParseDisplayName(pbc, lpszDisplayName, pcchEaten, ppmkOut)

This is the single function in the IParseDisplayName interface:

interface IParseDisplayName : IUnknown {
virtual HRESULT ParseDisplayName(pbc, lpszDisplayName, pcchEaten, ppmkOut) = 0;
};

Its semantics and parameters are as described in IMoniker::ParseDisplayName().

7.2.3. IBindCtx interface

The bind context parameter passed to many of the IMoniker operations serves a few purposes.

Its primary purpose is to accumulate the set of objects that get bound during an operation but which

should be released when the operation is complete. This is particularly useful in generic composites: using

the bind context in this way avoids binding an object, releasing it, only to have it bound again when the

operation moves on to another piece of the composite.

Another purpose of the bind context is to pass a group of parameters which do not change as an operation

moves from one piece of a generic composite to another. These are the binding options, and are described

below. Some of these binding options have a related return value in certain error conditions; the bind con-

text provides the means by which they can be returned.

The bind context is also the only means through which moniker operations should access contextual infor-

mation about their environment. There should be no direct calls in moniker implementations to API func-

tions that query or set state in the environment; all such calls should instead funnel through the bind con-

text. Doing this allows for future enhancements which can dynamically modify binding behaviour. In

OLE 2, the most important piece of contextual information that moniker operations need to access is the

Running Object Table; monikers should always access this table indirectly though IBindCtx::GetRunning-

ObjectTable(), rather than using the global function GetRunningObjectTable(). IBindCtx interface allows

for future extensions to the passed-in contextual information in the form the ability to maintain a string-

keyed table of objects. See IBindCtx::RegisterObjectParam() and related functions.

interface IBindCtx : IUnknown {
virtual HRESULT RegisterObjectBound(punk) = 0;
virtual HRESULT RevokeObjectBound(punk) = 0;
virtual HRESULT ReleaseBoundObjects() = 0;
virtual HRESULT SetBindOptions(pbindopts) = 0;
virtual HRESULT GetBindOptions(pbindopts) = 0;
virtual HRESULT GetRunningObjectTable(pprot) = 0;
virtual HRESULT RegisterObjectParam(lpszKey, punk) = 0;
virtual HRESULT GetObjectParam(lpszKey, ppunk) = 0;
virtual HRESULT EnumObjectParam(ppenum) = 0;
virtual HRESULT RevokeObjectParam(lpszKey) = 0;
};

typedef struct {
DWORD cbStruct; // the size in bytes of this structure. ie: sizeof(BINDOPTS).
DWORD grfFlags;
DWORD grfMode;
DWORD dwTickCountDeadline;
} BINDOPTS;

HRESULT CreateBindCtx(reserved, ppbc);

Page: 190

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

7.2.3.1. IBindCtx::RegisterObjectBound

HRESULT IBindCtx::RegisterObjectBound(punk)

Remember the passed object as one of the objects that has been bound during a moniker operation and

which should be released when it is complete overall. Calling this function causes the binding context to

create an additional reference to the passed-in object with IUnknown::AddRef(); the caller is still required

to Release() its own copy of the pointer independently.

The effect of calling this function twice with the same object is cumulative, in that it will require two

RevokeObjectBound() calls to completely remove the registration of the object within the binding context.

Argument Type Description

punk IUnknown* the object which is being registered as needing to be released.

return value HRESULT S_OK.

7.2.3.2. IBindCtx::RevokeObjectBound

HRESULT IBindCtx::RevokeObjectBound(punk)

This function undoes the effect of IBindCtx::RegisterObjectBound(): it removes the object from the set

that will be released when the bind context in IBindCtx::ReleaseBoundObjects() (actually removes one

occurrence of it). This function is likely to be rarely called, but is included for completeness.

Argument Type Description

punk IUnknown* the object which no longer needs to be released.

return value HRESULT S_OK, MK_E_NOTBOUND, E_OUTOFMEMORY

7.2.3.3. IBindCtx::ReleaseBoundObjects

HRESULT IBindCtx::ReleaseBoundObjects()

Releases all the objects currently registered with the bind context though RegisterObjectBound().

This function is (conceptually) called by the implementation of IBindCtx::Release().

Argument Type Description

return value HRESULT S_OK

7.2.3.4. IBindCtx::SetBindOptions

HRESULT IBindCtx::SetBindOptions(pbindopts)

Store in the bind context a block of parameters that will apply to later IMoniker operations using this bind

context. Using block of parameters like this is just an alternative way to pass parameters to an operation.

We distinguish the parameters we do for conveyance by this means because 1) they are common to most

IMoniker operations, and 2) these parameters do not change as the operation moves from piece to piece of

a generic composite.

Argument Type Description

pbindopts BINDOPTS* the block of parameters to set. These can later be retrieved with Get-

BindOptions().

return value HRESULT S_OK, E_OUTOFMEMORY

BINDOPTS is defined as follows:

typedef struct tagBINDOPTS {
DWORD cbStruct; // the size in bytes of this structure. ie: sizeof(BINDOPTS).
DWORD grfFlags;
DWORD grfMode;
DWORD dwTickCountDeadline;
} BINDOPTS;

Page: 191

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

The members of this structure have the following meanings:

Member Description

grfFlags

A group of boolean flags. Legal values that may be or’d together are the taken from the

enumeration BINDFLAGS; see below. Moniker implementations should simply ignore any set-bits

in this field that they do not understand (presumably because their meanings were defined in

some future OLE extension).

grfMode

A group of flags that indicates the intended use that the caller has towards the object that he

ultimately receives from the associated moniker binding operation. Constants for this member are

taken from the STGM enumeration, described in the chapter on “Persistent Storage For Objects.”

When applied to the BindToObject() operation, by far the most significant flag values are:

STGM_READ, STGM_WRITE, and STGM_READWRITE. It is possible that some binding operations

might make use of the other flags, particularly STGM_DELETEONRELEASE or STGM_CREATE, but

such cases are quite esoteric.

When applied to the BindToStorage() operation, most STGM values are potentially useful here.

The default value for grfMode is STGM_READWRITE | STGM_SHARE_EXCLUSIVE.

dwTickCountDeadline

This is an indication of when the caller would like the operation to complete. Having this

parameter allows the caller to approximately & heuristically bound the execution time of an oper-

ation when it is more important that the operation perform quickly than it is that it perform

accurately. Most often, this capability is used with IMoniker::GetTimeOfLastChange(), as was

previously described, though it can be usefully applied to other operations as well.

This 32-bit unsigned value is a time in milliseconds on the local clock maintained by the Get-

TickCount() function.76 A value of zero indicates “no deadline;” callers should therefore be

careful not to pass to the bind context a value of zero that was coincidentally obtained from

GetTickCount(). Clock wrapping is also a problem. Thus, if the value in this variable is less than

the current time by more than 231 milliseconds, then it should be interpreted as indicating a time

in the future of its indicated value plus 232 milliseconds.

Typical deadlines will allow for a few hundred milliseconds of execution. Each function should

try to complete its operation by this time on the clock, or fail with the error MK_E_EXCEEDED-
DEADLINE if it cannot do so in the time allotted. Functions are not required to be absolutely

accurate in this regard, since it is almost impossible to predict how execution might take (thus,

callers cannot rely on the operation completing by the deadline), but operations which exceeded

their deadline excessively will usually cause intolerable user delays in the operation of their

callers. Thus, in practice, the use of deadlines is a heuristic which callers can impose on the

execution of moniker operations.

If a moniker operation exceeds its deadline because a given object or objects that it uses are not

running, and if one of these had been running, then the operation would have completed more of

its execution, then the monikers of these objects should be recorded in the bind context using

RegisterObjectParam() under the parameter names “ExceededDeadline”, “ExceededDeadline1”,

“ExceededDeadline2”, etc.; use the first name in this series that is currently unused. This approach

gives the caller some knowledge as to when to try the operation again

The enumeration BINDFLAGS, which contains the legal values for the bitfield BINDOPTS::grfFlags, is defined

as follows:

typedef enum tagBINDFLAGS {
BINDFLAGS_MAYBOTHERUSER = 1,
BINDFLAGS_JUSTTESTEXISTENCE = 2,
} BINDFLAGS;

76 This implies that if an IBindCtx is ever remoted to a separate machine that the proxy for the IBindCtx would have to perform appropriate

translation to local tickcount time. In practice, however, IBindCtx will rarely if ever be remoted.

Page: 192

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

These flags have the following interpretation.

Value Description

BINDFLAGS_MAYBOTHERUSER
If not present, then the operation to which the bind context containing this parameter is

applied should not interact with the user in any way, such to ask for a password for a

network volume that needs mounting. If present, then this sort of interaction is permitted. If

prohibited from interacting with the user when it otherwise would like to, an operation may

elect to use a different algorithm that does not require user interaction, or it may fail with the

error MK_MUSTBOTHERUSER.

BINDFLAGS_JUSTTESTEXISTENCE
If present, indicates that the caller of the moniker operation to which this flag is being

applied is not actually interested in having the operation carried out, but only in learning of

the operation could have been carried out had this flag not been specified. For example, this

flag give the caller the ability to express that he is only interested in finding out whether an

object actually exists by using this flag in a BindToObject() call. Moniker implementations

are free, however, to ignore this possible optimization and carry out the operation in full.

Callers, therefore, need to be able to deal with both cases. See the individual routine

descriptions for details of exactly what status is returned.

7.2.3.5. IBindCtx::GetBindOptions

HRESULT IBindCtx::GetBindOptions(pbindopts)

Return the current binding options stored in this bind context. See IBindCtx::SetBindOpts() for a descrip-

tion of the semantics of each option.

Notice that the caller provides a BINDOPTS structure, which is filled in by this routine. It is the caller’s

responsibility to fill in the cbStruct member correctly.

Argument Type Description

pbindOpts BINDOPTS* the structure of binding options which is to be filled in.

return value SCODE

7.2.3.6. IBindCtx::GetRunningObjectTable

HRESULT IBindCtx::GetRunningObjectTable(pprot)

Return access to the Running Object Table relevant to this binding process. Moniker implementations

should get access to the Running Object Table using this function rather than the global API GetRunning-

ObjectTable(). The appropriate Running Object Table is determined implicitly at the time the bind context

is created.

Argument Type Description

pprot IRunningObjectTable** the place to return the running object table.

return value SCODE

7.2.3.7. IBindCtx::RegisterObjectParam

HRESULT IBindCtx::RegisterObjectParam(lpszKey, punk)

Register the given object pointer under the name lpszKey in the internally-maintained table of object poin-

ters. The intent of this table is that it be used as an extensible means by which contextual information can

be passed to the binding process. String keys are compared case-sensitive.

Like IBindCtx::RegisterObjectBound(), this function creates an additional reference to the passed-in

object using IUnknown::AddRef(). The effect of calling this function a second time with the same lpszKey

is to replace in the table the object passed-in the first time.

Page: 193

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

By convention, moniker implementors may freely use object parameters whose names begin with the

string representation of the class id of the moniker implementation in question.

This facility is also used as means by which various errors can convey information back to the caller.

Associated with certain error values are the following object parameters:

Error Parameters

MK_E_EXCEEDEDDEADLINE Parameters named “ExceededDeadline”, “ExceededDeadline1”,

“ExceededDeadline2”, etc., if they exist, are monikers who appearance as

running would make it reasonable for the caller to attempt the binding

operation again.

MK_E_CONNECTMANUALLY The parameter named “ConnectManually” is a moniker whose display name

should be shown to the user requesting that he manually connect it, then retry

the operation. The most common reason for return this value is that a

password is needed. However, it could be that a floppy needs to be mounted.

The existence of this error return is a concession to OLE implementation

schedules: clearly, in the best case, this stuff should be completely handled

inside the moniker implementations themselves. Later versions of the OLE-

provided monikers will be enhanced so that they simply don’t ever return this

value. Other moniker writers are discouraged from using it.

E_CLASSNOTFOUND The parameter named “ClassNotFound”, if present, is a moniker to the storage

of the object whose class was not able to be loaded in the process of a

moniker operation. When the moniker is being used in an OLE compound

document situation, a sophisticated client may wish to BindToStorage() on

this moniker, then attempt to carry out a Treat As... or Convert To...

operation as described in the “Persistent Storage For Objects” chapter. If this

is successful, then the binding operation could be tried again. Such a

methodology improves the usability of link operations.

New moniker authors can freely use parameter names that begin with the string form of the CLSID of their

moniker; see StringFromCLSID().

The arguments to this function are as follows:

Argument Type Description

lpszKey LPSTR the name under which the object is being registered.

punk IUnknown * the object being registered.

return value HRESULT S_OK, E_OUTOFMEMORY

7.2.3.8. IBindCtx::GetObjectParam

HRESULT IBindCtx::GetObjectParam(lpszKey, ppunk)

Lookup the given key in the internally-maintained table of contextual object parameters and return the

corresponding object, if one exists.

Argument Type Description

lpszKey LPSTR the key under which to look for an object.

ppunk IUnknown ** The place to return the object interface pointer. NULL is returned on

failure (along with S_FALSE).

return value HRESULT S_OK, S_FALSE

Page: 194

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

7.2.3.9. IBindCtx::EnumObjectParam

HRESULT IBindCtx::EnumObjectParam(ppenum)

Enumerate the strings which are the keys of the internally-maintained table of contextual object

parameters.

Argument Type Description

ppenum IEnumString ** the place to return the string enumerator. See Chapter 4 for a

description of IEnumString.

return value HRESULT S_OK, E_OUTOFMEMORY

7.2.3.10. IBindCtx::RevokeObjectParam

HRESULT IBindCtx::RevokeObjectParam(lpszKey)

Revoke the registration of the object currently found under this key in the internally-maintained table of

contextual object parameters, if any such key is currently registered.

Argument Type Description

lpszKey LPSTR the key whose registration is to be revoked.

return value HRESULT S_OK, S_FALSE

7.2.3.11. CreateBindCtx

HRESULT CreateBindCtx(reserved, ppbc)

Allocate and initialize a new BindCtx using an OLE-supplied implementation.

Argument Type Description

reserved DWORD reserved for future use; must be zero.

ppbc IBindCtx* the place in which to put the new BindCtx.

return value HRESULT S_OK, E_OUTOFMEMORY

7.2.4. Generic Composite Moniker class

Recall that in general monikers are a composite list made up of other pieces. All monikers which are a

generic composite of other monikers are instances of Generic Composite Moniker class whose implemen-

tation is provide with OLE; there is no need for two Generic Composite Moniker classes.

The implementations of Generic Composite Moniker::Reduce() and Generic Composite Moniker::BindTo-

Object() are particularly important as they manage the interactions between the various elements of the

composite, and as a consequence define the semantics of binding to the moniker as a whole.

Generic composite monikers of size zero or of size one are never exposed outside of internal Generic

Composite Moniker method implementations. From a client perspective, a Generic Composite Moniker

always contains at least two elements.

7.2.4.1. CreateGenericComposite

HRESULT CreateGenericComposite(pmkFirst, pmkRest, ppmkComposite)

Allocate and return a new composite moniker. pmkFirst and pmkRest are its first and trailing elements

respectively. Either of pmkFirst and pmkRest may be a generic composite, or another kind of moniker.

Generic composites get flattened into their component pieces before being put into the new composite.

This function will be called by implementations of IMoniker::ComposeWith() when they wish to carry out

a generic compose operation.

Argument Type Description

pmkFirst IMoniker* the first element(s) in the new composite. May not be NULL.

Page: 195

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

pmkRest IMoniker* the trailing element(s) in the new composite. May not be NULL.

ppmkComposite IMoniker* through here is returned the new composite.

return value HRESULT S_OK, E_OUTOFMEMORY

7.2.4.2. Generic Composite Moniker–IMoniker::Reduce

Reduction of a generic composite conceptually reduces each of its pieces in a left-to-right fashion and

builds up a a composite of the result. If any of the pieces of the composite did not reduce to themselves

(and thus, the generic composite overall did not reduce to itself), then this process is repeated.

An optimized implementation of this function might use a more complicated but equivalent algorithm that

avoids unnecessarily re-reducing monikers that the composite already knows reduce to themselves.

7.2.4.3. Generic Composite Moniker–IMoniker::BindToObject

Binding to a generic composite works in a right-to-left manner. Conceptually, the generic composite

merely forwards the bind request onto its last piece, along the way informing that piece of the moniker to

its left in the composite. The last piece, if it needs to, recursively binds to the object to its left. In practice,

binding to a generic composite itself has to handle the recursive call on the left-hand object, as was de-

scribed in IMoniker::BindToObject().

7.2.5. File Moniker class

A File Moniker can be thought of as a wrapper for a path name in the native file system. It’s implementa-

tion of IMoniker::GetDisplayName(), for example, is trivial: it just returns the path. When bound to, it de-

termines the class of the file by using the API GetClassFile(), makes sure that the appropriate class server

is running, then asks it to open the file. On DOS, network file servers are accessed by connecting a local

drive letter to the remote drive. File monikers designating such drives internally store the network name to

which they are connected instead of the drive letter. This conversion is done as soon as possible, often in

the process of parsing a display name.

7.2.5.1. CreateFileMoniker

HRESULT CreateFileMoniker(lpszPathName, ppmk)

Creates a moniker from the given path name. This path may be an absolute path or a relative path. In the

latter case, the resulting moniker will need to be composed onto another File Moniker before it can be

bound. In either case, it will often be the case that other monikers are composed onto the end of this

moniker in order to access sub-pieces of the document stored in the file.

Argument Type Description

lpszPathName LPSTR the path name of the desired file.

ppmk IMoniker* the newly created moniker.

return value HRESULT S_OK, MK_E_SYNTAX, E_OUTOFMEMORY

7.2.5.2. File Moniker–IMoniker::BindToObject

The class of an object designated by a File Moniker is determined in a platform-specific way; see Get-

ClassFile(). Having found the correct class, File Moniker::BindToObject() will instantiate an instance of it

using the interface IPersistFile (which is described in the chapter on “Persistent Storage for Objects”).

This interface contains an Load() function, which the File Moniker invokes to open the file and initialize

the object.

Page: 196

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

7.2.5.3. File Moniker–IMoniker::BindToStorage

The present implementation of File Moniker currently supports BindToStorage(..., IID_IStorage, ...) in the case

that the designated file in fact a Docfile. Future implementations will also support IStream and ILock-

Bytes.

7.2.5.4. File Moniker–IMoniker::GetDisplayName

File monikers render their display names according to the syntax of the platform on which they are cur-

rently found. A File Moniker serialized on one platform then deserialized on another will possibly have

different display names on each platform.

7.2.5.5. File Moniker–IMoniker::ParseDisplayName

File monikers designate objects that live in files; however, they have no knowledge of the name space con-

tained within that file. A File Moniker for the path “C:\FOO.XLS”, for example, knows how to connect to

the spreadsheet that is the file, but it does not know anything of the syntax of range-address expression

language of the sheet. Consequently, when asked to parse a display name, a File Moniker needs to dele-

gate this operation to the class object that it designates. For this purpose it uses the IParseDisplayName

interface. If the class refuses to handle the parse, the parsing is delegated to the object.

7.2.6. Item Moniker class

Item monikers provide a bridge from the generality of IMoniker interface to the simple and common situ-

ation in which an OLE object which is a container of other objects also provides a space of names for

those objects. Examples include Microsoft Excel, which has “named ranges,” and Microsoft Word for

Windows, which has “bookmarks.”

Item Moniker is a class, not a interface; that is, it is an implementation of IMoniker provided by the OLE

libraries, not an interface that others implement. This implementation supports IMoniker interface by

converting IMoniker invocations into a series of calls on part of the interface IOleItemContainer; the

support required on the container’s part is very much like the OLESERVERDOC::GetObject() of OLE 1. The

implication is that, for the most part, OLE 2 object implementors do not have to deal much with

monikers: they can continue to deal just with “items” in a string form, then wrap them in an Item

Moniker as needed to support other interfaces.

Thus, Item Monikers provide a straightforward and easily-implemented generalization of the OLE 1

document[, item]

referencing mechanism to

document[, item[, item[, item]]]

in the case where each item except possibly the last in fact specifies another embedded object which sup-

ports IOleItemContainer interface. Each “item” here is actually an Item Moniker.

A client creates an Item Moniker using CreateItemMoniker(). When this new moniker is composed onto

the end of a moniker that binds to an IOleItemContainer, the resulting composite moniker will bind to the

appropriate contained object.

The following is the IOleItemContainer interface used by Item Monikers:

interface IOleItemContainer : IOleContainer {
virtual HRESULT GetObject(lpszItem, dwSpeedNeeded, pbc, riid, ppvObject) = 0;
virtual HRESULT GetObjectStorage(lpszItem, pbc, riid, ppvStorage) = 0;
virtual HRESULT IsRunning(lpszItem) = 0;
};

Page: 197

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

7.2.6.1. CreateItemMoniker

HRESULT CreateItemMoniker(lpszDelim, lpszItem, ppmk)

Allocate and return a new Item Moniker. It is intended that the resulting moniker be then composed onto

the end of a second moniker which binds to something that supports IOleItemContainer interface. The

resulting composite moniker when bound will extract the object of the indicated name from within this

container.

lpszItem is the item name which will be later passed to IOleItemContainer::GetObject(). lpszDelim is

simply another string that will prefix lpszItem in the display name of the Item Moniker.

lpszItem may be NULL; this is the wildcard entry for Item Monikers. See the description of the Item

Moniker–IMoniker::IsRunning() implementation in the description of that function definition. Containers

who wish to use wild-card Item Monikers to match their elements should register as running:

pmkContainer -> wildCardItemMoniker
See also IOleItemContainer::IsRunning().

Argument Type Description

lpszDelim LPSTR a string that will prefix lpszItem in the display name of this moniker.

Often an exclamation mark: “!”. See also the discussion of syntax in

MkParseDisplayName().

lpszItem LPSTR the item name to pass to IOleItemContainer::GetObject().

ppmk IMoniker** the place to put the new Item Moniker.

return code HRESULT S_OK, E_OUTOFMEMORY

7.2.6.2. Item Moniker–IMoniker::BindToObject

Item monikers merely require IOleItemContainer interface of the object to their left, which they obtain by

invoking BindToObject() on the moniker of the object to their left. Once they have the container, they

merely invoke IOleItemContainer::GetObject() with the internally stored item name.

7.2.6.3. IOleItemContainer::GetObject

HRESULT IOleItemContainer::GetObject(lpszItem, dwSpeedNeeded, pbc, riid, ppvObject)

IOleItemContainer::GetObject() should first check to see if the given item designates an embedded object.

If so, then it should load and run the object, then return it. If not, then it should check to see if the item

designates a local object within the container. This latter case is just like OLESERVERDOC::GetObject() in

OLE 1.

dwSpeedNeeded is an indication of how willing the caller is to wait to get to the object. This value is set

by the implementation of Item Moniker; the value it uses is derived from the dwTickCountDeadline

parameter in the Bind Context that it receives. dwSpeedNeeded is one of the following values:

typedef enum tagBINDSPEED {
BINDSPEED_INDEFINITE = 1, // the caller is willing to wait indefinitely
BINDSPEED_MODERATE = 2, // the caller is willing to wait a moderate amount of time.
BINDSPEED_IMMEDIATE = 3, // the caller is willing to wait only a very short time
} BINDSPEED;

If BINDSPEED_IMMEDIATE is specified, then the object should be returned only if it is already running or if

it is a pseudo-object (an object internal to the item container, such as a cell-range in a spreadsheet or a

character-range in a word processor); otherwise, MK_E_EXCEEEDEDDEADLINE should be returned. BIND-
SPEED_MODERATE would include those things indicated by BINDSPEED_IMMEDIATE, plus, perhaps, those

objects which are always running when loaded: in this case, load (not load & run) the designated object,

ask if it is running, and return it if so; otherwise, fail with MK_E_EXCEEEDEDDEADLINE as before. BIND-
SPEED_INDEFINITE indicates that time is of no concern to the caller.

The actual bind context parameter is also here passed in pbc for the use of more sophisticated containers.

Less sophisticated containers can simply ignore this and look at dwSpeedNeeded instead. In effect, what

Page: 198

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

the implementation of Item Moniker does is convert the deadline in the bind context into an appropriate

dwSpeedNeeded, in the hope that the latter is easier to take a decision on for most containers.

Argument Type Description

lpszItem LPSTR the item in this container that should be bound to.

dwSpeedNeeded DWORD a value from the enumeration BINDSPEED. See above.

pbc IBindCtx* the actual deadline parameter involved in this binding operation. For

the use of more sophisticated containers. Most can ignore this, and

instead use dwSpeedNeeded.

riid REFIID the interface with which a connection to that object should be made.

ppvObject void** the bound-to object is returned here.

return value HRESULT S_OK, MK_E_EXCEEEDEDDEADLINE, MK_E_NOOBJECT, E_NOINTERFACE,
E_OUTOFMEMORY

7.2.6.4. Item Moniker–IMoniker::BindToStorage

For storage binding, Item Monikers merely require IOleItemContainer interface of the object to their left.

The implementation of Item Moniker::BindToStorage() binds to the object to its left using IOleItem-

Container interface, then invokes IOleItemContainer::GetObjectStorage() with the internally stored item

name.

7.2.6.5. IOleItemContainer::GetObjectStorage

HRESULT IOleItemContainer::GetObjectStorage(lpszItem, pbc, riid, ppvStorage)

If lpszItem designates an item in this container that has an independently identifiable piece of storage

(such as does an embedded object), then return access to that storage using the indicated interface.

pbc is the bind context as received by the Item Moniker BindToStorage() call. Most container implemen-

tations can simply ignore this value; it is passed for the benefit for more sophisticated containers.

Argument Type Description

lpszItem LPSTR the item access to whose storage is being requested.

pbc IBindCtx* as in IOleItemContainer::GetObject(). Can be ignored by most

containers.

riid REFIID the interface by which the caller wishes to access that storage. Often

IID_IStorage or IID_IStream are used.

ppvStorage void** the place to return the access to the storage

return value HRESULT S_OK, MK_E_EXCEEDEDDEADLINE, MK_E_NOOBJECT, E_OUTOFMEMORY,
E_NOINTERFACE, MK_E_NOSTORAGE

7.2.6.6. IOleItemContainer::IsRunning

HRESULT IOleItemContainer::IsRunning(lpszItem)

Answer whether the given item in this item container is in fact running or not. See IMoniker::IsRunning()

for a sketch of how this function is used in Item Monikers.

Argument Type Description

lpszItem LPSTR the item access to whose running status is being requested.

return value HRESULT S_OK, S_FALSE, MK_E_NOOBJECT

7.2.6.7. Item Moniker–IMoniker::ParseDisplayName

Item Moniker::ParseDisplayName() uses IParseDisplayName in the same way as a File Moniker does.

Note that it requests this interface from a different object than the one that supplies the IOleItemContainer

Page: 199

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

interface used in BindToObject(), etc.: it asks for IOleItemContainer of the object designated by the

moniker to its left, whereas it asks for IParseDisplayName of the object that it (the Item Moniker)

designates.

7.2.7. Anti Moniker class

An Anti Moniker is a moniker that when composed onto the end of a generic composite moniker removes

the last piece. Composing an Anti Moniker onto the end of another kind of moniker should, generally,

annihilate the whole other moniker.

Being composed onto the end of another moniker is pretty much the only interesting thing one can do to

an anti-moniker: they cannot be bound, their display name is useless, etc. They exist to support implemen-

tations of IMoniker::Inverse(); see that function for usage scenarios.

Moniker implementations that use Anti Monikers as inverses should check for Anti Monikers on the right

in their implementations of IMoniker::ComposeWith() and collapse down to nothing if so.

7.2.7.1. CreateAntiMoniker

HRESULT CreateAntiMoniker(ppmk)

Create and return a new anti-moniker.

Argument Type Description

ppmk IMoniker** the place to return the new anti-moniker

return value HRESULT S_OK, E_OUTOFMEMORY

7.2.8. Pointer Moniker class

A pointer moniker is a kind of moniker that wraps an existing object pointer in a moniker so that it may

participate as a piece in the moniker binding process. Think of pointers as a referencing mechanism into

the “active space:” a process’s memory. Most moniker implementations are by contrast references into

“passive space:” the representation of an object on disk. Pointer monikers provide a means by which a a

given use of a moniker can transparently reference either active or passive space.

Implementations of functions in IMoniker interface for Pointer Monikers work roughly as follows. Bind-

ToObject() turns into a QueryInterface() on the pointer; BindToStorage() returns MK_E_NOSTORAGE; Re-

duce() reduces the moniker to itself; ComposeWith() always does a generic composition; Enum() returns

NULL; IsSystemMoniker() returns MKSYS_NONE; IsEqual() uses the identity test paradigm on pointers

after first checking that the other moniker for the right class; Hash() returns a constant; GetTimeOfLast-

Change() returns MK_E_UNAVAILABLE; Inverse() returns an anti-moniker; RelativePathTo() returns the

other moniker; GetDisplayName() returns NULL; and ParseDisplayName() binds to the punk pointer

using IParseDisplayName interface and works from there.

Instances of this kind of moniker refuse to be serialized; that is, IPersistStream::Save() will return an er-

ror. These monikers can, however, be marshalled to a different process in an RPC call; internally, this

marshals and unmarshals the pointer using the standard paradigm for marshalling interface pointers.

7.2.8.1. CreatePointerMoniker

HRESULT CreatePointerMoniker(punk, ppmk)

Wrap a pointer in a Pointer Moniker so that it can be presented to interfaces that require monikers for

generality, but specific uses of which can usefully deal with a moniker which cannot be saved to backing

store.

Argument Type Description

punk IUnknown* the pointer that we are wrapping up in a moniker.

ppmk IMoniker** the returned Pointer Moniker.

return value HRESULT S_OK, E_OUTOFMEMORY

Page: 200

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

7.3. OLE 2 Link Objects

Now that we understand how monikers provide a generalized abstraction of a reference to data, we will

examine in detail the workings of the most common place in which monikers are actually used: OLE 2

linked compound-document objects.

As mentioned earlier, OLE 2 provides for tracking links as they move about relative to their sources. In

order to support the most general such support it is necessary to ask the moniker of the link source to

generate a tracking representation of itself (which would be another moniker, of course, perhaps called a

“tracking moniker”). Though this most-general support has been designed, and will be implemented in

the future, it is not implemented in OLE 2. Instead, in OLE 2 knowledge of one particularly important

link-tracking algorithm is incorporated into the OLE-provided link object: in addition to storing the

moniker given to it with IOleLink::SetSourceMoniker(), it also stores a relative moniker formed using its

own moniker, the source moniker, and IMoniker::RelativePathTo(). The relative moniker has priority over

the original, absolute moniker: the link object always tries to bind the relative moniker first, using the

absolute moniker on if the relative one fails to bind. Using a relative moniker in addition to the absolute

moniker in this way covers the following link tracking scenarios:

1. the link source and the link consumer have been copied or moved but retain the same

relative structure. A very important common case of this is that of two documents in the

same directory. Another case is that of a link between two objects both embedded in a third

document. In these situations, the relative moniker succeeds in binding.

2. the link source does not move, but the consumer does (in a manner other than that of the

previous case). Here, the relative moniker fails to bind, but the absolute one works.

Link tracking scenarios other than these are not supported by OLE 2. When at a later time more sophisti-

cated tracking is supported, the following will need to be done:

1. A new interface containing functions by which a moniker can be asked to generate a tracking

representation of itself will be defined. This interface will be obtained from a moniker using

QueryInterface().

2. As a helper, a new moniker implementation will be provided: Tracking Moniker. Instances

of this kind of moniker contain a prioritized sequence of monikers which are tried in turn

when the Tracking Moniker is reduced or bound.

3. Generic Composite Moniker will likely need to be generalized in a small way in order to ob-

tain the desired compositional behavior with Tracking Moniker and like moniker implemen-

tations.

4. The implementation of the OLE link object will need to be revised in order to cause it to use

the new tracking support.

All of these steps can easily be done without breaking then-existing OLE 2 applications.

7.3.1. IOleLink interface

From a container’s perspective, the architectural difference between an embedding and a link is that a link

supports IOleLink interface whereas an embedding does not. IOleLink interface contains functionality by

which the moniker inside the link and the link’s update options are manipulated.

interface IOleLink : IUnknown {
virtual HRESULT SetUpdateOptions(dwUpdateOpt) = 0;
virtual HRESULT GetUpdateOptions(pdwUpdateOpt) = 0;
virtual HRESULT SetSourceMoniker(pmk, rclsid) = 0;
virtual HRESULT GetSourceMoniker(ppmk) = 0;
virtual HRESULT SetSourceDisplayName(lpszDisplayName) = 0;
virtual HRESULT GetSourceDisplayName(lplpszDisplayName) = 0;
virtual HRESULT BindToSource(bindflags, pbc) = 0;
virtual HRESULT BindIfRunning() = 0;
virtual HRESULT GetBoundSource(ppUnk) = 0;
virtual HRESULT UnbindSource() = 0;
virtual HRESULT Update(pbc) = 0;
};

Page: 201

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

7.3.1.1. IOleLink::SetUpdateOptions

HRESULT IOleLink::SetUpdateOptions(dwUpdateOpt)

This function sets the link-update options for the link object. This controls exactly when the data and / or

presentation cache on the consuming end of the link is updated. dwUpdateOpt is taken from the

enumeration OLEUPDATE, defined as follows:

typedef enum tagOLEUPDATE {
OLEUPDATE_ALWAYS = 1,
OLEUPDATE_ONCALL = 3,
} OLEUPDATE;

These flags have the following semantics:

Value Description

OLEUDPATE_ALWAYS update the link object whenever possible. This option supports the Automatic link-

update option in the Links dialog box. This is the default value.

OLEUPDATE_ONCALL update the link object only when IOleObject::Update() is called. This option

supports the Manual link-update option in the Links dialog box.

The arguments to this function have the following meanings.

Argument Type Description

dwUpdateOpt DWORD flags taken from the enumeration OLEUPDATE.

return value HRESULT S_OK, E_INVALIDARG

7.3.1.2. IOleLink::GetUpdateOptions

HRESULT IOleLink::GetUpdateOptions(pdwUpdateOpt)

Retrieve update options previously set with IOleLink::SetUpdateOptions().

Argument Type Description

pdwUpdateOpt DWORD * a place to return flags taken from the enumeration OLEUPDATE.

return value HRESULT S_OK

7.3.1.3. IOleLink::SetSourceMoniker

HRESULT IOleLink::SetSourceMoniker(pmk, rclsid)

Stores inside of the link object a moniker which indicates the source of the link. This moniker becomes

part of the persistent state of the object. In addition to storing this moniker, in order to support link source

tracking, link objects also store a relative moniker computed as:

pmkOfThisLinkObject->RelativePathTo(pmk).
When in the running state (i.e.: the source moniker has been bound and connected), a link object registers

itself on its link source to receive rename notifications. When one is received, the link object updates its

source moniker to the new name. The primary reason for doing this is to handle as best we can the situ-

ation where a link is made to a newly created document that has never been saved, though doing this does

provide better link tracking in general. For example, newly created Excel spreadsheets are named

“SHEET1”, “SHEET2”, etc. Only when they are saved for the first time do they acquire a persistent

identity which is appropriate to store in links to them. So long as the sheet is saved before its link con-

sumer is closed the link will track correctly.

Recall that from the container’s perspective, a link is just an embedding that also happens to support the

IOleLink interface. In particular, a link object may be at different times in both the loaded and the

running state. When in the loaded state, the link object still needs to be able to carry out a limited amount

of class-specific, such as verb enumeration, data format enumeration, etc. In order to be able to carry this

out, the link object keeps as part of its persistent state an internal cache of the CLSID of the object to which

it was last connected. The parameter rclsid here is the initial value of the cache. The cache is updated

whenever the link connects. Further, SetSourceMoniker() does a BindIfRunning(), so if the link source

Page: 202

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

indicated by pmk is currently running, then rclsid has basically no effect. See also IOleLink::BindTo-

Source().

Argument Type Description

pmk IMoniker * the new moniker for the link.

rclsid REFCLSID the value to set for the cached class of the link source that is kept in

the link object. Most often either CLSID_NULL or the previous value of

the CLSID (obtainable with IOleObject::GetUserClassID()) is passed.

return value HRESULT S_OK

7.3.1.4. IOleLink::GetSourceMoniker

HRESULT IOleLink::GetSourceMoniker(ppmk)

Retrieve the indication of the current link source.

Argument Type Description

ppmk IMoniker ** the place at which the moniker currently in the link should be placed.

return value HRESULT S_OK

7.3.1.5. IOleLink::SetSourceDisplayName

HRESULT IOleLink::SetSourceDisplayName(lpszDisplayName)

As described above in IMoniker::GetDisplayName(), monikers used to indicate the source of embedded

link objects have a display name by which they can be shown to the user. Conversely display names can be

parsed into moniker using MkParseDisplayName(). Most often, the indication of a link source is provided

directly in a moniker, such as the moniker passed through the clipboard in a Copy / Paste Link operation.

Less frequently, it is originates in a textual form, such as the text box in the Edit / Links... dialog.

Monikers originating in textual form of course need to be parsed into monikers in order to be stored as the

source of a link. A key question is whether this is done before or after the display name / moniker is

passed to the link object. Both scenarios are supported.

• If the caller wishes to do the parsing, then he calls MkParseUserName() and passes the

resulting moniker to IOleLink::SetSourceMoniker().

• If instead it wishes the link object itself to do the parsing, then it should call IOleLink::Set-

SourceDisplayName(). This allows the possibility that the link object can optimize the par-

sing with a subsequent binding.

In the latter case, then by the first time the link needs to be bound the display name will be parsed and the

resulting moniker stored in its place.77 Until such parsing takes place, the link object will not participate

in auto-link reconnections (see the Alert Object Table); thus, most callers will either want to themselves

call MkParseDisplayName() or will want to let the link object do the parsing but run the link immediately

after setting the display name in order to cause the parsing to happen.

Argument Type Description

lpszDisplayNameLPSTR the display name of the new link source. May not be NULL.

return value HRESULT S_OK, MK_E_SYNTAX

7.3.1.6. IOleLink::GetSourceDisplayName

HRESULT IOleLink::GetSourceDisplayName(lplpszDisplayName)

This returns the display name of the source of the link using the most efficient means available.

The present implementation carries this out by simply asking the internal moniker for its display name.

This is sometimes expensive, though very rarely (and never with any of the OLE-supplied monikers).

77 In fact, the present implementation parses immediately, but that may be optimized in future releases.

Page: 203

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

Thus, clients who for whom this is a time-critical operation should consider caching the display name

themselves.

Argument Type Description

lplpszDisplayName LPSTR* the place to return the name of the link source. May not be NULL.

return value HRESULT S_OK + any error returned from IMoniker::GetDisplayName().

7.3.1.7. IOleLink::BindToSource

HRESULT IOleLink::BindToSource(grfLinkBind, pbc)

Causes the link to bind the moniker contained within itself. When the user double-clicks a link and the

server must be located, this is the workhorse function which is invoked to cause the connection to happen,

though normally this is invoked by being called internally by DoVerb().

pbc is the bind context to use for the bind operation.

When binding a link, it may be the case that the current class of the link source is not the same as it was

the previous time that the link tried to connect. Imagine, for example, a link to a Lotus spreadsheet object

that the user subsequently converted (using the Change Type dialog) to an Excel sheet. grfLinkBind con-

trols the behaviour of the binding operation in this scenario. It contains values taken from the enumera-

tion OLELINKBIND:

typedef enum tagOLELINKBIND {
OLELINKBIND_EVENIFCLASSDIFF = 1,
} OLELINKBIND:

If OLELINKBIND_EVENIFCLASSDIFF is not provided, then this function will return OLE_E_CLASSDIFF if the

class is different than the previous time that this link successfully bound. If OLELINKBIND_EVENIFCLASS-
DIFF is given, then the bind process will proceed even if the class has changed.

When OleRun() is invoked on an embedding which is in fact a link object, it conceptually just invokes this

function as

plink->BindToSource(0, 0)
If OleRun() returns OLE_E_CLASSDIFF, then the client will have to call BindToSource() directly.

Argument Type Description

grfLinkBind DWORD values from the enumeration OLELINKBIND.

pbc IBindCtx* the bind context to use for the bind operation. May be NULL.

return value HRESULT S_OK, OLE_E_CLASSDIFF, MK_E_NOOBJECT, MK_E_EXCEEDEDDEADLINE,
MK_E_SYNTAX

7.3.1.8. IOleLink::BindIfRuning

HRESULT IOleLink::BindIfRunning()

This binds the link to its source only if said source is in fact presently running.

Argument Type Description

return value HRESULT S_OK, MK_E_SYNTAX, others

7.3.1.9. IOleLink::GetBoundSource

HRESULT IOleLink::GetBoundSource(ppUnk)

This function retrieves the object to which the this link is currently connected, if any is present. In the

event that no source is currently connected, then S_FALSE is returned by the function and NULL is returned

through *ppunk.

Page: 204

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

Argument Type Description

ppUnk IUnknown* the place to return the currently-connected source of this object. May

not be NULL. In the event that no source is currently connected,

NULL is returned.

return value HRESULT S_OK, S_FALSE

7.3.1.10. IOleLink::UnbindSource

HRESULT IOleLink::UnbindSource()

If the link object is presently connected to it source, then break that connection.

Argument Type Description

return value HRESULT S_OK

7.3.1.11. IOleLink::Update

HRESULT IOleLink::Update(pbc)

Carry out the same functionality as is described in IOleObject::Update(), but in addition record any bound

objects in the passed in bind context. IOleObject::Update() on an object which also supports IOleLink

should just call IOleLink::Update(NULL) on itself. Non-NULL uses of pbc allow complex binding

scenarios to be optimized by callers.

The OLE-provided Link Object implementation of IOleLink::Update() requires that the link be made

running; that is, that the source moniker be bound. In the event that the source is unavailable, then the

implementation of Update() is careful not to loose the presentations that it already has cached from the

previous time it connected. That is, a failed connect attempt will not cause any presentations to be lost.

Argument Type Description

pbc IBindCtx* the bind context to use for binding operations carried out during the

update. May be NULL.

return value HRESULT S_OK, ...

7.3.1.12. Link Object – IOleObject::IsUpToDate

The implementation of IsUpToDate() in links is a bit tricky. The problem is two-fold:

1) how to avoid comparing the local clock against the remote clock at the other end of the

link, since the two may be very much out of synchronization, and

2) how to handle the fact that we must treat equal change times reported from the source

conservatively as “out of date” due to possible lack of precision in the source’s clock. For

example, if the source data is changing at the rate of 20 times per second, but the only

clock that the source has available with which to report change times has a resolution of

one second, then each group of 20 changes will report exactly the same change time.

The solutions to these problems are embodied in the OLE-provided link object implementation; however,

it is instructive nevertheless that others understand how they are addressed.

Consider Figure 79. Whenever a link object updates

from its source, it stores the remote time (rtUpdate) be-

yond which the data in that update is known not to

have changed; this is the time returned by GetTime-

OfLastChange() on the source moniker. In addition to

this time, the link object also stores the local time

(ltChangeOfUpdate) at which it first obtained a

particular value of rtUpdate. That is, when rtUpdate is

revised as a result of an Update(), if the new value is

different than the old, then ltChangeOfUpdate is set to

local clock remote clock

rtUpdate

ltKnownUpToDate

} no change in source

rtTimeOfLastChange

ltChangeOfUpdate

} no change in source

Figure 79. Out-of-date detection for links

Page: 205

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

the current local time; if it is the same, then ltChangeOfUpdate is left alone. Finally, the link object stores

the local time (ltKnownUpToDate) at which it last new itself to be up to date. For auto-links, this time is

updated as part of their save sequence. Manual links update this time only at Update() time. When

IsUpToDate() is invoked, it retrieves GetTimeOfLastChange(), the value indicated by rtTimeOfLast-

Change in the diagram. Given this structure, a link is deemed to be up to date if (approximately):

(rtTimeOfLastChange - rtChangeOfUpdate) < (ltKnownUpToDate - ltUpdate)
More completely, backwards movement of clocks needs to be considered, and a case of equal remote times

is taken as out of date (per the problem indicated above) only if less than two seconds has elapsed on our

local clock (that is, we assume that remote clocks have a precision of at least two seconds).

7.3.2. Running Object Table

In general when binding to an object we want to open it if it is currently passive, but if not, then we want

to connect to the running instance. A link to a Lotus 123 for Windows spreadsheet, for example, when

first bound to should open the spreadsheet, but a second bind should connect to the already-open copy.

The key technical piece that supports this is the Running Object Table.

The Running Object Table is a globally accessible table on each workstation. It keeps track of the objects

that are currently running on that workstation so that if an attempt is made to bind to one a connection to

the currently running instance can be made instead of loading the object a second time. The table

conceptually is a series of tuples, each of the form:

(pmkObjectName, pvObject)

The first element is the moniker that if bound should connect to the running object. The second element is

the object that is publicized as being available, the object that is running. In the process of binding, mon-

ikers being bound with nothing to their left consult the pmkObjectName entries in the Running Object

Table to see if the object that they (the moniker being bound) indicate is already running.

Access to the Running Object Table is obtained with the function GetRunningObjectTable(). This returns

an object with the interface IRunningObjectTable (note as described earlier, however, that moniker imple-

mentations should not use this API, but should instead access the Running Object Table from the bind

context they are passed).

As entries are placed into the Running Object Table, they are matched against the Alert Object Table to

see if any auto-link reconnections need to be done.78

interface IRunningObjectTable : IUnknown {
virtual HRESULT Register(reserved, pUnkObject, pmkObjectName, pdwRegister) = 0;
virtual HRESULT Revoke(dwRegister) = 0;
virtual HRESULT IsRunning(pmkObjectName) = 0;
virtual HRESULT GetObject(pmkObjectName, ppunkObject) = 0;
virtual HRESULT NoteChangeTime(dwRegister, pfiletime) = 0;
virtual HRESULT GetTimeOfLastChange(pmkObjectName, pfiletime) = 0;
virtual HRESULT EnumRunning(ppenumMoniker) = 0;
};

SCODE GetRunningObjectTable(reserved, pprot);

7.3.2.1. GetRunningObjectTable

HRESULT GetRunningObjectTable(reserved, pprot)

Return a pointer to the Running Object Table for the caller’s context.

Argument Type Description

reserved DWORD reserved for future use; must be zero.

pprot IRunningObjectTable** the place to return the running object table.

return value HRESULT S_OK

78 Recall that the Alert Object Table is not provided in this OLE release.

Page: 206

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

7.3.2.2. IRunningObjectTable::Register

HRESULT IRunningObjectTable::Register(reserved, pUnkObject, pmkObjectName, pdwRegister)

Register the fact that the object pUnkObject has just entered the running state and that if the moniker

pmkObjectName is bound to, then this object should be used as the result of the bind (with an appropriate

QueryInterface()).

The moniker pmkObjectName should be fully reduced before registration. See IMoniker::Reduce() for a

more complete discussion. If an object goes by more than one fully reduced moniker, then it should regis-

ter itself under all such monikers. Here, “fully reduced” means reduced to the state MKRREDUCE_THROUG-
USER.
OLE compound document objects should announce themselves as running by calling this function as soon

as all of the following are true:

1. The object is in the running state.

2. The object knows its full moniker (see IOleObject::SetMoniker()). This is true if both of the

following are true:

2a. A moniker for the object relative to its container has been assigned to the object. Recall

that this is part of the persistent state of the object.

2b. The object knows the current moniker of its container (almost always through its con-

tainer calling IOleObject::SetMoniker()). Recall that the moniker of the object’s contain-

er is not part of the persistent state of the object.

3. There is any possibility that a link to the object or something that it contains exists.

Normally, if a link has ever been made to an object, then it must be assumed that the link to the object still

might exist. The consumer of the link might be on a floppy disk somewhere, for example, which may later

reappear. The exceptions are some rare situations where a link is created but almost immediately de-

stroyed before the link source is saved.

The moniker with which the OLE object should register itself as running is its full moniker as described

in IOleObject::GetMoniker().

Registering a second object under the same moniker sets up a second independent registration, though

MK_S_MONIKERALREADYREGISTERED is returned instead of S_OK. This is done without regard to the value

of pUnkObject in the second registration; thus, registering the exact same (pmkObjectName, pUnkObject) pair

a second time will set up a second registration. It is not intended that multiple registration under the same

moniker be a common occurrence, as which registration actually gets used in various situations is non-

deterministic.

The arguments to this function are as follows:

Argument Type Description

reserved DWORD reserved for future use; must be zero.

pUnkObject IUnknown* the object which has just entered the running state.

pmkObjectName IMoniker* the moniker which would bind to the newly running object.

pdwRegister DWORD* a place to return a value by which this registration can later be revoked.

May not be NULL.

return value HRESULT S_OK, MK_S_MONIKERALREADYREGISTERED, E_NOMEMORY

7.3.2.3. IRunningObjectTable::Revoke

HRESULT IRunningObjectTable::Revoke(dwRegister)

Undo the registration done in IRunningObjectTable::Register(), presumably because the object is about to

cease to be running. Revoking an object that is not registered as running returns the status code

MK_S_NOT_RUNNING. Whenever any of the conditions that cause an object to register itself as running

cease to be true, the object should revoke its registration(s). In particular, objects must be sure to extant

Page: 207

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

registrations of themselves from the Running Object Table as part of their release process; there is no

means by which entries in the Running Object Table can be removed automatically by the system.

Argument Type Description

dwRegister DWORD a value previously returned from IRunningObjectTable::Register().

return value HRESULT S_OK, MK_S_NOT_RUNNING.

7.3.2.4. IRunningObjectTable::IsRunning

HRESULT IRunningObjectTable::IsRunning(pmkObjectName)

This function should, in general, only be called by implementations of IMoniker::IsRunning(); clients of

monikers should invoke this on their monikers, rather than asking the R.O.T. directly.

Inquire by looking up in this Running Object Table as to whether an object with this moniker is currently

registered as running. Success or failure is indicated using the return codes S_OK or S_FALSE. The R.O.T.

compares monikers by sending IsEqual() to the monikers already in the table with moniker on the right as

an argument.

Argument Type Description

pmkObjectName IMoniker* the moniker that we want to see is running

return value HRESULT S_OK, S_FALSE.

7.3.2.5. IRunningObjectTable::GetObject

HRESULT IRunningObjectTable::GetObject(pmkObjectName, ppunkObject)

If the object designated by pmkObject name is registered as actually running, then return the object so

registered. The R.O.T. compares monikers by sending IsEqual() to the monikers already in the table with

moniker on the right as an argument.

This is the function moniker implementations should use to test if they are already running (and get the

pointer to the object if so).

Argument Type Description

pmkObjectName IMoniker* the moniker in whom interest is being expressed.

ppunkObject IUnknown** the place to return the pointer to the object. A returned value of NULL

indicates that the object is not registered.

return value HRESULT S_OK, MK_S_NOT_RUNNING

7.3.2.6. IRunningObjectTable::NoteChangeTime

HRESULT IRunningObjectTable::NoteChangeTime(dwRegister, pfiletime)

Make a note of the time that a particular object has changed in order that IMoniker::GetTimeOfLast-

Change() can report an appropriate change time. This time so registered is retrievable with IRunningOb-

jectTable::GetTimeOfLastChange(). Objects should call this as part of their data change notification

process.

Argument Type Description

dwRegister DWORD the token previously returned from IRunningObjectTable::Register().

The moniker whose change time is noted is the one specified in

pmkObjectName in that call.

pfiletime FILETIME * on entry, the time at which the object has changed.

return value HRESULT S_OK

Page: 208

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

7.3.2.7. IRunningObjectTable::GetTimeOfLastChange

HRESULT IRunningObjectTable::GetTimeOfLastChange(pmkObjectName, pfiletime)

As with IMoniker::IsRunning(), this function should, in general, only be called by implementations of

IMoniker::GetTimeOfLastChange(); clients of monikers should invoke this on their monikers, rather than

asking the R.O.T. directly.

Look up this moniker in the running object table and report the time of change recorded for it if same is

present. The R.O.T. compares monikers by sending IsEqual() to the monikers already in the table with

moniker on the right as an argument. Implementations of IMoniker::GetTimeOfLastChange(), when in-

voked with pmkToLeft == NULL, will want to call this function as the first thing they do.

Argument Type Description

pmkObjectName IMoniker * the moniker in which we are interested in the time of change.

pfiletime FILETIME * on exit, the place at which the time of change is returned.

return value HRESULT S_OK, MK_S_NOT_RUNNING

7.3.2.8. IRunningObjectTable::EnumRunning

HRESULT IRunningObjectTable::EnumRunning(ppenumMoniker)

Enumerates the objects currently registered as running. The returned enumerator is of type IEnumMoni-

ker, which enumerates monikers.

typedef Enum<IMoniker*> IEnumMoniker;
The monikers which have been passed to IRunningObjectTable::Register() are enumerated.

Argument Type Description

ppenumMoniker IEnumMoniker** the place at which to return the enumerator.

return value HRESULT S_OK, E_OUTOFMEMORY

7.3.3. Auto-link Reconnection & the Alert Object Table

Warning to readers: the following discusses what the Alert Object Table does and gives an overview of

how its implementation would work. However, the Alert Object Table specifically and auto-link recon-

nection in general are not supported in this release of OLE. The description of their design and support

has been retained in this specification in order to educate the curious.

It is explicitly not guaranteed that this functionality will at all be supported at any particular time in the

future.79 Further, if it is supported at some future time, that it is not guaranteed that it will be supported

exactly as described herein.

The problem of correctly reconnecting auto-links when their link sources become open was discussed at

the beginning of this chapter. We now look at that problem in depth. Consider the picture shown in Fig-

ure 80, which illustrates a link from a (whole) chart stored in the file QUARTERS.XLC into a report

document REPORT.DOC. This link is an automatic (as opposed to manual) link. Suppose the user opens RE-

PORT.DOC, then double clicks on the link. QUARTERS.XLC is opened in its editor, and if the use makes any

changes to the chart, then they are immediately reflected in the report. However, if instead of opening the

chart by double clicking the link the user opens it by using the File/Open command in its editor, then

changes are not reflected in the report: the connection to the report is not automatically made when the

chart is opened. This is very surprising behaviour to users. The primary component of OLE 2 that

addresses this problem is the Alert Object Table.

79 Though clearly such support would be valuable.

Page: 209

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAAAAA

AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA

AAAA
AAAAAAAA

AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAAAAAA

AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

$0

$2,000

$4,000

$6,000

$8,000

Q1 Q2 Q3

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAAAAA

AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA

AAAA
AAAAAAAA

AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAAAAAA

AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

$0

$2,000

$4,000

$6,000

$8,000

Q1 Q2 Q3

QUARTERS.XLC

REPORT.DOC
Figure 80. Link from chart to report.

Suppose that both documents are presently closed, and the

user then opens REPORT.DOC. At this point in time, OLE has

to be told that the link inside the report is awaiting the ap-

pearance of a certain object, namely the chart. If and when

the chart later appears, the link object will notified and a

connection automatically established. While the link is

awaiting the appearance of its source, it is said to be in the

“alert” state. The Alert Object Table contains a list of

objects and the monikers whose appearance each of them is

awaiting.

Notice that embedded objects cannot go into the Alert state,

since they don’t contain monikers whose appearance can be

awaited. However, an embedded object may contain a link object, and in general the embedding can be of

an arbitrary depth before the link is reached. Furthermore, while in the alert state, such a nested link

object may not even be loaded off of disk at all; only the outermost embedding need have been loaded (in

order to get its picture, which contains the pictures of all the nested embeddings and the link). Thus, the

process of notifying an alert object may require that it and intermediate objects above it be loaded before

the reconnection can occur. We accomplish this by having the alert object register itself using a moniker;

in order to do a notification we bind this moniker, which will do any needed intermediate loading.

In order that we can compare the trigger monikers of the objects in the Alert Object Table with the

monikers of the objects currently registered as running, both monikers need to be reduced to the same

level: MKREDUCE_THROUGHUSER.

7.3.3.1. OLEOBJPRIV & OLEOBJMON structures

Normally, the internal state of links and embeddings is completely hidden to the outside: clients access

this state solely through various interfaces on the object. However, in order that auto-link reconnection

can be done it is necessary that some of this internal state be accessible when the object is not even loaded

from the disk. Accordingly, the state needed to support reconnection needs to be in a publicly accessible

location in the storage of the link. This state is manipulated using the OLEOBJPRIV structure and the

functions WriteOleObjPrivStg() and ReadOleObjPrivStg(). It is intended that these functions are only to

be used by implementations of object handlers and by the implementation of StgEnumObjects().

Reminder: These structures are not implemented.

typedef struct tagOLEOBJMON {
IMoniker * pmkObject; // for links and embeddings
IMoniker * pmkSourceRel; // non-NULL for links only
IMoniker * pmkSourceAbs; // non-NULL for links only
} OLEOBJMON;

typedef struct tagOLEOBJPRIV {
OLEOBJMON; // anonymous member; its members merge into current scope
LPSTR lpszDisplayNameCache; // non-NULL for links only. NULL if cache is empty.
DWORD dwUpdateOpt; // relevant for links only
} OLEOBJPRIV;

This structure definition makes use of an anonymous member in order that the internally stored monikers

may be separated into a separate typedef that can be reused in functions such as RegisterAsAlert(). The

members of the OLEOBJMON become members of the OLEOBJPRIV. The net effect is to create an

OLEOBJPRIV which appears to be defined as:

typedef struct tagOLEOBJPRIV {
IMoniker * pmkObject; // for links and embeddings
IMoniker * pmkSourceRel; // non-NULL for links only
IMoniker * pmkSourceAbs; // non-NULL for links only
LPSTR lpszDisplayNameCache; // non-NULL for links only. NULL if cache is empty.
DWORD dwUpdateOpt; // relevant for links only
} OLEOBJPRIV;

Page: 210

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

All objects, both links and embeddings, which have a moniker that has been assigned to them with IOle-

Object::SetObjectMoniker() store that moniker in the pmkObject member of the OLEOBJPRIV. The remain-

ing members of the OLEOBJPRIV are applicable only to links. For a link object, it is always the case that at

least one of the members pmkSourceAbs and lpszDisplayNameCache is non-NULL.

The members of OLEOBJPRIV have the following meanings:

Member Description

pmkObject a moniker for the embedded or linked object. When passed to

Read/WriteOleObjPrivStg(), this must be the moniker of the object, this

moniker must be the moniker of the object relative to its container; when

passed to RegisterAsAlert(), this must be a full moniker for the object. See also

StgEnumObjects().

pmkSourceRel a moniker indicating the source of the link relative to the moniker of the object

which is the link target.

pmkSourceAbs the absolute moniker indicating the source of the link.

lpszDisplayNameCache the cached display name of the link source.

dwUpdateOpt the update options of the link object.

7.3.3.2. WriteOleObjPrivStg

HRESULT WriteOleObjPrivStg(pstg, pobjpriv)

Write the OLEOBJPRIV for a link or an embedding to the IStorage instance in which that object is stored.

pobjpriv->pmkObject is the moniker of the object relative to its container. This function should only be

used by implementations of embedding or link handlers.

Reminder: This function is not implemented.

Argument Type Description

pstg IStorage* the storage into which the handler state is to be written.

pobjpriv OLEOBJPRIV* the handler state which is to be written. May not be NULL, though

some members of this structure may be (especially if the object is not a

link.)

return value HRESULT S_OK.

7.3.3.3. ReadOleObjPrivStg

HRESULT ReadOleObjPrivStg(pstg, pobjpriv)

Read an oleobjpriv previously written with WriteOleObjPrivStg(). This function should only need to be

called by implementations of embedding and link handlers, and by the implementation of StgEnum-

Objects(). This function returns S_OK if successful; it returns E_FAIL if no OLEOBJPRIV has ever been writ-

ten to this IStorage.

Reminder: This function is not implemented.

Argument Type Description

pstg IStorage* the storage from which the handler state is to be read.

pobjpriv OLEOBJPRIV* the handler state which is to be read. Caller allocated (with members

in an undefined state); filled in by the callee.

return value HRESULT S_OK, E_FAIL.

7.3.3.4. StgEnumObjects

HRESULT StgEnumObjects(pstgRoot, pmkRoot, grfFilter, grfMode, ppenumGrovel)

Reminder: This function is not implemented.

Page: 211

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

Answer an enumerator that will enumerate all the OLE objects transitively contained within the passed

IStorage instance. The enumerator returned by this utility function provides an easy way for a container

implementor to put all of his transitively-contained link objects into the alert state. Recall from the chapter

on Persistent Storage for Objects that each embedded object has associated with it an instance of IStorage;

if an object is also a container then the IStorage instances of nested objects are children of the container’s

IStorage. The enumerator walks the tree of these storage object underneath the IStorage passed as pstg,

looking for objects.

Objects are identified by the presence of a class tag in the IStorage (see WriteClassStg() / IStorage::Set-

Class()); there may be intermediate non-object IStorage instances used by containers, but these are skipped

in the enumeration.

Link objects are identified by the presence of their source moniker being stored in a well-known location

inside their persistent representation. The enumerator digs out this trigger moniker and returns it (and

other necessary state) during the enumeration.

The enumerator is of type IEnumGrovel, which is defined as

typedef Enum<GROVELOBJECT> IEnumGrovel;
where

typedef struct {
OLEOBJPRIV; // anonymous member; its members merge into current scope.
IStorage * pstg; // the storage of the link object.
} GROVELOBJECT;

(Like the definition of OLEOBJPRIV, the definition of GROVELOBJECT makes use of anonymous structure

members.)

In detail, the process of enumerating links is done as follows. The enumeration walks the tree of IStorage

objects contained beneath pstgRoot. It looks at each such IStorage and from it retrieves the class id and

the handler state. For each link object that it finds, the enumeration returns in a GROVELOBJECT the OLE-
OBJPRIV together with the IStorage instance in which the link was found.

The pmkObject member returned in the GROVELOBJECT (i.e.: the OLEOBJPRIV::pmkObject member found in

the anonymous OLEOBJPRIV member of GROVELOBJECT) is different than the pmkObject member that is

persistently stored inside the IStorage. Whereas the latter is the moniker of the object relative to its

container, the moniker returned in the GROVELOBJECT is the full moniker to the object. This transfor-

mation is accomplished by composing the chain of relative-monikers found in the objects on the path from

pstgRoot down to the link object onto the end of the moniker pmkRoot.

A container can put its transitively-contained links into the alert state by calling RegisterAsAlert() using

the information returned in the GROVELOBJECT. They can be taken out the alert state by calling Revoke-

AsAlert() instead.

The parameter grfFilter can control whether links, embeddings, or both are enumerated.

typedef enum tagSTGGROVEL {
STGGROVEL_LINKS = 1, // without this flag, links are skipped in the enumeration.
STGGROVEL_EMBEDS = 2, // without this flag, embeddings are skipped in the enumeration.
} STGGROVEL;

The parameter grfMode can be used to control how nested storage objects are opened in the process of this

groveling. Legal values from the enumeration STGM which may be passed here are:

STGM_READ, STGM_READWRITE, STGM_SHARE_(any)
Other STGM values are illegal in this function (in particular, STGM_TRANSACTED). If a STGM_SHARE_*
value is not explicitly passed in grfMode, then STGM_SHARE_DENY_WRITE is used.

Once again, readers are reminded that this function is not implemented; this description is included for educational purposes only.

Argument Type Description

pstgRoot IStorage* the storage object whose tree structure we are to grovel.

pmkRoot IMoniker* the moniker which forms the prefix of the moniker to the alert objects.

grfFilter DWORD flags from the enumeration STGGROVEL.

Page: 212

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

grfMode DWORD flags from the enumeration STGM (described in the storage chapter).

ppenumGrovel IEnumGrovel** the place at which the enumerator is returned.

return value HRESULT S_OK

7.3.3.5. RegisterAsAlert

HRESULT RegisterAsAlert(pobjmon, pdwRegister)

Reminder: this function is not implemented.

Register the fact that one object is awaiting the appearance of a second object. When the second object

appears, the first object is connected to and IOleAlert::OnAppear() invoked. The first object, the one

which awaits the second, is indicated by the moniker pobjmon->pmkObject.
The object which the first object awaits is indicated using pobjmon->pmkSourceRel and pobjmon->pmkSource-
Abs. These contain a relative and an absolute moniker to the source, respectively. The relative moniker is

interpreted relative to pobjmon->pmkObject. At most one of these may be non-NULL. If only one of the

source monikers is non-NULL, then the object is registered as awaiting that one moniker. If instead both

are non-NULL, the object is registered as awaiting either source. However, the relative moniker takes

priority: if the absolute moniker appears first, then before the object is awakened from its alert state, the

relative moniker is bound with BINDFLAGS_JUSTTESTEXISTENCE and an infinite deadline in order to

determine whether it in fact exists or not. If it does, then the registration on the absolute moniker is

discarded.80

A common situation for which optimization is done the situation where the result pmkRelFull of

IMoniker * pmkRelFull;
(pobjmon->pmkObject)->ComposeWith(pobjmon->pmkSourceRel, &pmkRelFull)

is in fact equal to pobjmon->pmkSourceAbs. In this case, pmkSourceAbs and pmkRelFull indicate the same

link source, and the awaiting of only one object need be registered.

It is important that the monikers pmkSourceAbs and pmkSourceRel not be reduced by the caller this

function. Reduction of monikers is in general an expensive operation, comparable to that of binding, since

it may need to load arbitrarily large amounts of data (in most situations, though, reduction is cheap). Ob-

jects are put in the alert state precisely because a user does not at a particular time want to pay the cost of

doing a full bind. Thus, to reduce the monikers now defeats our whole purpose.

Furthermore, it is the case that only a fully reduced moniker can be compared against the monikers in the

Running Object Table. The matching process in the Alert Object Table gets out of this dilemma by incre-

mentally but cheaply trying to reduce the trigger monikers using a deadline binding option. When reduced

under a deadline, a moniker can fail to reduce because some intermediate object needed by the binding

process is not currently running. In this case, the Alert Object Table registers the original trigger moniker

as awaiting the appearance of this intermediate object; that is, the trigger moniker itself enters the alert

state. When the intermediate object appears, the trigger moniker is notified, and the reduction is tried

again. Eventually, the trigger moniker fully reduces, and will then be compared against current and future

entries in the Running Object Table.

Argument Type Description

pobjmon OLEOBJMON* the monikers indicating the object and the source(s) it awaits.

pdwRegister DWORD* the place at which a registration token is returned.

return value HRESULT TBD.

7.3.3.6. RevokeAsAlert

HRESULT RevokeAsAlert(dwRegister)

Reminder: this function is not implemented.

80 In summary: auto-link reconnection in the face of link-tracking is a really hard problem. It gets particularly hairy when an extensible

tracking architecture is considered.

Page: 213

OLE 2 Specification: Linking and Naming Support © Microsoft Corporation 1992-1993. All Rights Reserved.

Undo the effects of a previous RegisterAsAlert().

Argument Type Description

dwRegister DWORD a value returned previously from RegisterAsAlert().

return value HRESULT S_OK, ALERT_E_NOREGISTRATION

7.3.4. IOleAlert interface

Reminder: this interface is not implemented.

IOleAlert interface is the interface with which the Alert Object Table binds to an object in order to inform

it of the appearance of the moniker which it was registered as awaiting. This interface is very simple, con-

taining but one function.

interface IOleAlert : IUnknown {
virtual void OnAppear(pmkTrigger) = 0;
};

7.3.4.1. IOleAlert::OnAppear

void IOleAlert::OnAppear(pmkTrigger)

Reminder: this function is not implemented.

Informs the alert object that the object that it was registered as awaiting has now appeared.

Argument Type Description

pmkTrigger IMoniker* the moniker of the object that has now appeared.

Page: 214

